Back to Search Start Over

recountmethylation enables flexible analysis of public blood DNA methylation array data.

Authors :
Maden SK
Walsh B
Ellrott K
Hansen KD
Thompson RF
Nellore A
Source :
Bioinformatics advances [Bioinform Adv] 2023 Feb 20; Vol. 3 (1), pp. vbad020. Date of Electronic Publication: 2023 Feb 20 (Print Publication: 2023).
Publication Year :
2023

Abstract

Summary: Thousands of DNA methylation (DNAm) array samples from human blood are publicly available on the Gene Expression Omnibus (GEO), but they remain underutilized for experiment planning, replication and cross-study and cross-platform analyses. To facilitate these tasks, we augmented our recountmethylation R/Bioconductor package with 12 537 uniformly processed EPIC and HM450K blood samples on GEO as well as several new features. We subsequently used our updated package in several illustrative analyses, finding (i) study ID bias adjustment increased variation explained by biological and demographic variables, (ii) most variation in autosomal DNAm was explained by genetic ancestry and CD4+ T-cell fractions and (iii) the dependence of power to detect differential methylation on sample size was similar for each of peripheral blood mononuclear cells (PBMC), whole blood and umbilical cord blood. Finally, we used PBMC and whole blood to perform independent validations, and we recovered 38-46% of differentially methylated probes between sexes from two previously published epigenome-wide association studies.<br />Availability and Implementation: Source code to reproduce the main results are available on GitHub (repo: recountmethylation_flexible-blood-analysis_manuscript; url: https://github.com/metamaden/recountmethylation_flexible-blood-analysis_manuscript). All data was publicly available and downloaded from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). Compilations of the analyzed public data can be accessed from the website recount.bio/data (preprocessed HM450K array data: https://recount.bio/data/remethdb_h5se-gm_epic_0-0-2_1589820348/; preprocessed EPIC array data: https://recount.bio/data/remethdb_h5se-gm_epic_0-0-2_1589820348/).<br />Supplementary Information: Supplementary data are available at Bioinformatics Advances online.<br /> (© The Author(s) 2023. Published by Oxford University Press.)

Details

Language :
English
ISSN :
2635-0041
Volume :
3
Issue :
1
Database :
MEDLINE
Journal :
Bioinformatics advances
Publication Type :
Academic Journal
Accession number :
36874953
Full Text :
https://doi.org/10.1093/bioadv/vbad020