Back to Search
Start Over
The Roles of Transient Receptor Potential Vanilloid 1 and 4 in Olfactory Regeneration.
- Source :
-
Laboratory investigation; a journal of technical methods and pathology [Lab Invest] 2023 Apr; Vol. 103 (4), pp. 100051. Date of Electronic Publication: 2023 Jan 12. - Publication Year :
- 2023
-
Abstract
- Olfactory disorders, which are closely related to cognitive deterioration, can be caused by several factors, including infections, such as COVID-19; aging; and environmental chemicals. Injured olfactory receptor neurons (ORNs) regenerate after birth, but it is unclear which receptors and sensors are involved in ORN regeneration. Recently, there has been great focus on the involvement of transient receptor potential vanilloid (TRPV) channels, which are nociceptors expressed on sensory nerves during the healing of damaged tissues. The localization of TRPV in the olfactory nervous system has been reported in the past, but its function there are unclear. Here, we investigated how TRPV1 and TRPV4 channels are involved in ORN regeneration. TRPV1 knockout (KO), TRPV4 KO, and wild-type (WT) mice were used to model methimazole-induced olfactory dysfunction. The regeneration of ORNs was evaluated using olfactory behavior, histologic examination, and measurement of growth factors. Both TRPV1 and TRPV4 were found to be expressed in the olfactory epithelium (OE). TRPV1, in particular, existed near ORN axons. TRPV4 was marginally expressed in the basal layer of the OE. The proliferation of ORN progenitor cells was reduced in TRPV1 KO mice, which delayed ORN regeneration and the improvement of olfactory behavior. Postinjury OE thickness improved faster in TRPV4 KO mice than WT mice but without acceleration of ORN maturation. The nerve growth factor and transforming growth factor ß levels in TRPV1 KO mice were similar to those in WT mice, and the transforming growth factor ß level was higher than TRPV4 KO mice. TRPV1 was involved in stimulating the proliferation of progenitor cells. TRPV4 modulated their proliferation and maturation. ORN regeneration was regulated by the interaction between TRPV1 and TRPV4. However, in this study, TRPV4 involvement was limited compared with TRPV1. To our knowledge, this is the first study to demonstrate the involvement of TRPV1 and TRPV4 in OE regeneration.<br /> (Copyright © 2022 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1530-0307
- Volume :
- 103
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Laboratory investigation; a journal of technical methods and pathology
- Publication Type :
- Academic Journal
- Accession number :
- 36870285
- Full Text :
- https://doi.org/10.1016/j.labinv.2022.100051