Back to Search Start Over

Self-organized metabotyping of obese individuals identifies clusters responding differently to bariatric surgery.

Authors :
Lappa D
Meijnikman AS
Krautkramer KA
Olsson LM
Aydin Ö
Van Rijswijk AS
Acherman YIZ
De Brauw ML
Tremaroli V
Olofsson LE
Lundqvist A
Hjorth SA
Ji B
Gerdes VEA
Groen AK
Schwartz TW
Nieuwdorp M
Bäckhed F
Nielsen J
Source :
PloS one [PLoS One] 2023 Mar 02; Vol. 18 (3), pp. e0279335. Date of Electronic Publication: 2023 Mar 02 (Print Publication: 2023).
Publication Year :
2023

Abstract

Weight loss through bariatric surgery is efficient for treatment or prevention of obesity related diseases such as type 2 diabetes and cardiovascular disease. Long term weight loss response does, however, vary among patients undergoing surgery. Thus, it is difficult to identify predictive markers while most obese individuals have one or more comorbidities. To overcome such challenges, an in-depth multiple omics analyses including fasting peripheral plasma metabolome, fecal metagenome as well as liver, jejunum, and adipose tissue transcriptome were performed for 106 individuals undergoing bariatric surgery. Machine leaning was applied to explore the metabolic differences in individuals and evaluate if metabolism-based patients' stratification is related to their weight loss responses to bariatric surgery. Using Self-Organizing Maps (SOMs) to analyze the plasma metabolome, we identified five distinct metabotypes, which were differentially enriched for KEGG pathways related to immune functions, fatty acid metabolism, protein-signaling, and obesity pathogenesis. The gut metagenome of the most heavily medicated metabotypes, treated simultaneously for multiple cardiometabolic comorbidities, was significantly enriched in Prevotella and Lactobacillus species. This unbiased stratification into SOM-defined metabotypes identified signatures for each metabolic phenotype and we found that the different metabotypes respond differently to bariatric surgery in terms of weight loss after 12 months. An integrative framework that utilizes SOMs and omics integration was developed for stratifying a heterogeneous bariatric surgery cohort. The multiple omics datasets described in this study reveal that the metabotypes are characterized by a concrete metabolic status and different responses in weight loss and adipose tissue reduction over time. Our study thus opens a path to enable patient stratification and hereby allow for improved clinical treatments.<br />Competing Interests: The authors declare no conflict of interest.<br /> (Copyright: © 2023 Lappa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
1932-6203
Volume :
18
Issue :
3
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
36862673
Full Text :
https://doi.org/10.1371/journal.pone.0279335