Back to Search
Start Over
Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria.
Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria.
- Source :
-
Experimental neurology [Exp Neurol] 2023 May; Vol. 363, pp. 114356. Date of Electronic Publication: 2023 Feb 24. - Publication Year :
- 2023
-
Abstract
- Monoamine oxidase (MAO) is an enzyme located on the outer mitochondrial membrane that metabolizes amine substrates like serotonin, norepinephrine and dopamine. MAO inhibitors (MAOIs) are frequently utilized to treat disorders such as major depression or Parkinson's disease (PD), though their effects on brain mitochondrial bioenergetics are unclear. These studies measured bioenergetic activity in mitochondria isolated from the mouse cortex in the presence of inhibitors of either MAO-A, MAO-B, or both isoforms. We found that only 10 μM clorgyline, the selective inhibitor of MAO-A and not MAO-B, increased mitochondrial oxygen consumption rate in State V(CI) respiration compared to vehicle treatment. We then assessed mitochondrial bioenergetics, reactive oxygen species (ROS) production, and Electron Transport Chain (ETC) complex function in the presence of 0, 5, 10, 20, 40, or 80 μM of clorgyline to determine if this change was dose-dependent. The results showed increased oxygen consumption rates across the majority of respiration states in mitochondria treated with 5, 10, or 20 μM with significant bioenergetic inhibition at 80 μM clorgyline. Next, we assessed mitochondrial ROS production in the presence of the same concentrations of clorgyline in two different states: high mitochondrial membrane potential (ΔΨ <subscript>m</subscript> ) induced by oligomycin and low ΔΨ <subscript>m</subscript> induced by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). There were no changes in ROS production in the presence of 5, 10, 20, or 40 μM clorgyline compared to vehicle after the addition of oligomycin or FCCP. There was a significant increase in mitochondrial ROS in the presence of 80 μM clorgyline after FCCP addition, as well as reduced Complex I and Complex II activities, which are consistent with inhibition of bioenergetics seen at this dose. There were no changes in Complex I, II, or IV activities in mitochondria treated with low doses of clorgyline. These studies shed light on the direct effect of MAO-A inhibition on brain mitochondrial bioenergetic function, which may be a beneficial outcome for those taking these medications.<br />Competing Interests: Declaration of Competing Interest The authors declare no conflict of interest.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1090-2430
- Volume :
- 363
- Database :
- MEDLINE
- Journal :
- Experimental neurology
- Publication Type :
- Academic Journal
- Accession number :
- 36841465
- Full Text :
- https://doi.org/10.1016/j.expneurol.2023.114356