Back to Search Start Over

Machine Learning and BMI Improve the Prognostic Value of GAP Index in Treated IPF Patients.

Authors :
Lacedonia D
De Pace CC
Rea G
Capitelli L
Gallo C
Scioscia G
Tondo P
Bocchino M
Source :
Bioengineering (Basel, Switzerland) [Bioengineering (Basel)] 2023 Feb 14; Vol. 10 (2). Date of Electronic Publication: 2023 Feb 14.
Publication Year :
2023

Abstract

Patients affected by idiopathic pulmonary fibrosis (IPF) have a high mortality rate in the first 2-5 years from diagnosis. It is therefore necessary to identify a prognostic indicator that can guide the care process. The Gender-Age-Physiology (GAP) index and staging system is an easy-to-calculate prediction tool, widely validated, and largely used in clinical practice to estimate the risk of mortality of IPF patients at 1-3 years. In our study, we analyzed the GAP index through machine learning to assess any improvement in its predictive power in a large cohort of IPF patients treated either with pirfenidone or nintedanib. In addition, we evaluated this event through the integration of additional parameters. As previously reported by Y. Suzuki et al., our data show that inclusion of body mass index (BMI) is the best strategy to reinforce the GAP performance in IPF patients under treatment with currently available anti-fibrotic drugs.

Details

Language :
English
ISSN :
2306-5354
Volume :
10
Issue :
2
Database :
MEDLINE
Journal :
Bioengineering (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
36829744
Full Text :
https://doi.org/10.3390/bioengineering10020251