Back to Search
Start Over
Toward Individualized Prediction of Binge-Eating Episodes Based on Ecological Momentary Assessment Data: Item Development and Pilot Study in Patients With Bulimia Nervosa and Binge-Eating Disorder.
- Source :
-
JMIR medical informatics [JMIR Med Inform] 2023 Feb 23; Vol. 11, pp. e41513. Date of Electronic Publication: 2023 Feb 23. - Publication Year :
- 2023
-
Abstract
- Background: Prevention of binge eating through just-in-time mobile interventions requires the prediction of respective high-risk times, for example, through preceding affective states or associated contexts. However, these factors and states are highly idiographic; thus, prediction models based on averages across individuals often fail.<br />Objective: We developed an idiographic, within-individual binge-eating prediction approach based on ecological momentary assessment (EMA) data.<br />Methods: We first derived a novel EMA-item set that covers a broad set of potential idiographic binge-eating antecedents from literature and an eating disorder focus group (n=11). The final EMA-item set (6 prompts per day for 14 days) was assessed in female patients with bulimia nervosa or binge-eating disorder. We used a correlation-based machine learning approach (Best Items Scale that is Cross-validated, Unit-weighted, Informative, and Transparent) to select parsimonious, idiographic item subsets and predict binge-eating occurrence from EMA data (32 items assessing antecedent contextual and affective states and 12 time-derived predictors).<br />Results: On average 67.3 (SD 13.4; range 43-84) EMA observations were analyzed within participants (n=13). The derived item subsets predicted binge-eating episodes with high accuracy on average (mean area under the curve 0.80, SD 0.15; mean 95% CI 0.63-0.95; mean specificity 0.87, SD 0.08; mean sensitivity 0.79, SD 0.19; mean maximum reliability of r <subscript>D</subscript> 0.40, SD 0.13; and mean r <subscript>CV</subscript> 0.13, SD 0.31). Across patients, highly heterogeneous predictor sets of varying sizes (mean 7.31, SD 1.49; range 5-9 predictors) were chosen for the respective best prediction models.<br />Conclusions: Predicting binge-eating episodes from psychological and contextual states seems feasible and accurate, but the predictor sets are highly idiographic. This has practical implications for mobile health and just-in-time adaptive interventions. Furthermore, current theories around binge eating need to account for this high between-person variability and broaden the scope of potential antecedent factors. Ultimately, a radical shift from purely nomothetic models to idiographic prediction models and theories is required.<br /> (©Ann-Kathrin Arend, Tim Kaiser, Björn Pannicke, Julia Reichenberger, Silke Naab, Ulrich Voderholzer, Jens Blechert. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 23.02.2023.)
Details
- Language :
- English
- ISSN :
- 2291-9694
- Volume :
- 11
- Database :
- MEDLINE
- Journal :
- JMIR medical informatics
- Publication Type :
- Academic Journal
- Accession number :
- 36821359
- Full Text :
- https://doi.org/10.2196/41513