Back to Search
Start Over
Stochastic processes drive the soil fungal communities in a developing mid-channel bar.
- Source :
-
Frontiers in microbiology [Front Microbiol] 2023 Feb 06; Vol. 14, pp. 1104297. Date of Electronic Publication: 2023 Feb 06 (Print Publication: 2023). - Publication Year :
- 2023
-
Abstract
- Intricate associations between rhizosphere microbial communities and plants play a critical role in developing and maintaining of soil ecological functioning. Therefore, understanding the assembly patterns of rhizosphere microbes in different plants and their responses to environmental changes is of great ecological implications for dynamic habitats. In this study, a developing mid-channel bar was employed in the Yangtze River to explore the assembly processes of rhizosphere fungal communities among various plant species using high-throughput sequencing-based null model analysis. The results showed a rare significant variation in the composition and alpha diversity of the rhizosphere fungal community among various plant species. Additionally, the soil properties were found to be the primary drivers instead of plant species types. The null model analysis revealed that the rhizosphere fungal communities were primarily driven by stochastic processes (i.e., undominated processes of ecological drift), and the predominance varied with various plant species. Moreover, the assembly processes of rhizosphere fungal communities were significantly related to the changes in soil properties (i.e., soil total carbon, total nitrogen, organic matter, and pH). The co-occurrence network analysis revealed that many keystone species belonged to unclassified fungi. Notably, five network hubs were almost unaffected by the measured soil properties and aboveground plant traits, indicating the effect of stochastic processes on the rhizosphere fungal community assembly. Overall, these results will provide insights into the underlying mechanisms of fungal community assembly in the rhizosphere soils, which are significant for maintaining the functional stability of a developing ecosystem.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2023 Ye, Hong, Yi, Sun, Wu and Wang.)
Details
- Language :
- English
- ISSN :
- 1664-302X
- Volume :
- 14
- Database :
- MEDLINE
- Journal :
- Frontiers in microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 36814566
- Full Text :
- https://doi.org/10.3389/fmicb.2023.1104297