Back to Search Start Over

Lignin-grafted quaternary ammonium phosphate with temperature and pH responsive behavior for improved enzymatic hydrolysis and cellulase recovery.

Authors :
Li F
Liang H
Shan J
Zhang A
Lou H
Tang Y
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2023 Apr 15; Vol. 234, pp. 123779. Date of Electronic Publication: 2023 Feb 21.
Publication Year :
2023

Abstract

The cost of lignocellulosic enzymatic hydrolysis was reduced by enhancing enzymatic hydrolysis and recycling cellulase. Lignin-grafted quaternary ammonium phosphate (LQAP) with sensitive temperature and pH response, was obtained by grafting quaternary ammonium phosphate (QAP) onto enzymatic hydrolysis lignin (EHL). LQAP dissolved under the hydrolysis condition (pH 5.0, 50 °C) and enhanced the hydrolysis. After hydrolysis, LQAP and cellulase co-precipitated by the hydrophobic binding and electrostatic attraction, when lowering pH to 3.2, and cooling to 25 °C. LQAP had significant performances of pH-UCST response, enzymatic hydrolysis enhancement and cellulase recovery at the same time. When 3.0 g/L LQAP-100 was added to the system of corncob residue, SED@48 h increased from 62.6 % to 84.4 %, and 50 % of amount of cellulase was saved. Precipitation of LQAP at low temperature was mainly attributed to the salt formation of positive and negative ions in QAP; LQAP enhanced the hydrolysis for its ability to decrease the ineffective adsorption of cellulase by forming a hydration film on lignin and through the electrostatic repulsion. In this work, a lignin amphoteric surfactant with temperature response, was used to enhance hydrolysis and recover cellulase. This work will provide a new idea for reducing the cost of lignocellulose-based sugar platform technology, and high-value utilization of industrial lignin.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
234
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
36812966
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.123779