Back to Search Start Over

From 2 dimensions to 3rd dimension: Quantitative prediction of anterior chamber depth from anterior segment photographs via deep-learning.

Authors :
Soh ZD
Jiang Y
S/O Ganesan SS
Zhou M
Nongiur M
Majithia S
Tham YC
Rim TH
Qian C
Koh V
Aung T
Wong TY
Xu X
Liu Y
Cheng CY
Source :
PLOS digital health [PLOS Digit Health] 2023 Feb 01; Vol. 2 (2), pp. e0000193. Date of Electronic Publication: 2023 Feb 01 (Print Publication: 2023).
Publication Year :
2023

Abstract

Anterior chamber depth (ACD) is a major risk factor of angle closure disease, and has been used in angle closure screening in various populations. However, ACD is measured from ocular biometer or anterior segment optical coherence tomography (AS-OCT), which are costly and may not be readily available in primary care and community settings. Thus, this proof-of-concept study aims to predict ACD from low-cost anterior segment photographs (ASPs) using deep-learning (DL). We included 2,311 pairs of ASPs and ACD measurements for algorithm development and validation, and 380 pairs for algorithm testing. We captured ASPs with a digital camera mounted on a slit-lamp biomicroscope. Anterior chamber depth was measured with ocular biometer (IOLMaster700 or Lenstar LS9000) in data used for algorithm development and validation, and with AS-OCT (Visante) in data used for testing. The DL algorithm was modified from the ResNet-50 architecture, and assessed using mean absolute error (MAE), coefficient-of-determination (R2), Bland-Altman plot and intraclass correlation coefficients (ICC). In validation, our algorithm predicted ACD with a MAE (standard deviation) of 0.18 (0.14) mm; R2 = 0.63. The MAE of predicted ACD was 0.18 (0.14) mm in eyes with open angles and 0.19 (0.14) mm in eyes with angle closure. The ICC between actual and predicted ACD measurements was 0.81 (95% CI 0.77, 0.84). In testing, our algorithm predicted ACD with a MAE of 0.23 (0.18) mm; R2 = 0.37. Saliency maps highlighted the pupil and its margin as the main structures used in ACD prediction. This study demonstrates the possibility of predicting ACD from ASPs via DL. This algorithm mimics an ocular biometer in making its prediction, and provides a foundation to predict other quantitative measurements that are relevant to angle closure screening.<br />Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: THR was a former scientific adviser and owns stock of Medi Whale. All other authors declare no competing interest.<br /> (Copyright: © 2023 Soh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
2767-3170
Volume :
2
Issue :
2
Database :
MEDLINE
Journal :
PLOS digital health
Publication Type :
Academic Journal
Accession number :
36812642
Full Text :
https://doi.org/10.1371/journal.pdig.0000193