Back to Search Start Over

Dissecting cell identity via network inference and in silico gene perturbation.

Authors :
Kamimoto K
Stringa B
Hoffmann CM
Jindal K
Solnica-Krezel L
Morris SA
Source :
Nature [Nature] 2023 Feb; Vol. 614 (7949), pp. 742-751. Date of Electronic Publication: 2023 Feb 08.
Publication Year :
2023

Abstract

Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks <superscript>1</superscript> . Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms-mouse and human haematopoiesis, and zebrafish embryogenesis-and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of noto, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.<br /> (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)

Details

Language :
English
ISSN :
1476-4687
Volume :
614
Issue :
7949
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
36755098
Full Text :
https://doi.org/10.1038/s41586-022-05688-9