Back to Search Start Over

The Rab GTPase-binding protein EHBP1L1 and its interactors CD2AP/CIN85 negatively regulate the length of primary cilia via actin remodeling.

Authors :
Iwano T
Sobajima T
Takeda S
Harada A
Yoshimura SI
Source :
The Journal of biological chemistry [J Biol Chem] 2023 Mar; Vol. 299 (3), pp. 102985. Date of Electronic Publication: 2023 Feb 06.
Publication Year :
2023

Abstract

Primary cilia are organelles consisting of axonemal microtubules and plasma membranes, and they protrude from the cell surface to the extracellular region and function in signal sensing and transduction. The integrity of cilia, including the length and structure, is associated with signaling functions; however, factors involved in regulating the integrity of cilia have not been fully elucidated. Here, we showed that the Rab GTPase-binding protein EHBP1L1 and its newly identified interactors CD2AP and CIN85, known as adaptor proteins of actin regulators, are involved in ciliary length control. Immunofluorescence microscopy showed that EHBP1L1 and CD2AP/CIN85 are localized to the ciliary sheath. EHBP1L1 depletion caused mislocalization of CD2AP/CIN85, suggesting that CD2AP/CIN85 localization to the ciliary sheath is dependent on EHBP1L1. Additionally, we determined that EHBP1L1- and CD2AP/CIN85-depleted cells had elongated cilia. The aberrantly elongated cilia phenotype and the ciliary localization defect of CD2AP/CIN85 in EHBP1L1-depleted cells were rescued by the expression of WT EHBP1L1, although this was not observed in the CD2AP/CIN85-binding-deficient mutant, indicating that the EHBP1L1-CD2AP/CIN85 interaction is crucial for controlling ciliary length. Furthermore, EHBP1L1- and CD2AP/CIN85-depleted cells exhibited actin nucleation and branching defects around the ciliary base. Taken together, our data demonstrate that the EHBP1L1-CD2AP/CIN85 axis negatively regulates ciliary length via actin network remodeling around the basal body.<br />Competing Interests: Conflict of interest The authors declare that they have no competing interests.<br /> (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1083-351X
Volume :
299
Issue :
3
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
36754282
Full Text :
https://doi.org/10.1016/j.jbc.2023.102985