Back to Search Start Over

Effects of replacing inorganic salts of trace minerals with organic trace minerals in the pre- and postpartum diets on mineral status, antioxidant biomarkers, and health of dairy cows.

Authors :
Mion B
Ogilvie L
Van Winters B
Spricigo JFW
Anan S
Duplessis M
McBride BW
LeBlanc SJ
Steele MA
Ribeiro ES
Source :
Journal of animal science [J Anim Sci] 2023 Jan 03; Vol. 101.
Publication Year :
2023

Abstract

Our objectives were to evaluate the effects of complete replacement of supplementary inorganic salts of trace minerals (ITM; cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn) sulfates and sodium (Na) selenite) by organic trace minerals (OTM; Co, Cu, Mn, Zn proteinates, and selenized yeast) in both pre- and postpartum diets on trace minerals (TM) concentrations in body fluids and liver, antioxidant and inflammation biomarkers in blood, and postpartum health of dairy cows. Pregnant cows were blocked by parity and body condition score and randomly assigned to ITM (n = 136) or OTM (n = 137) 45 d before expected calving. Both groups received the same pre- and postpartum diets except for the source of supplementary TM. The day of calving was considered study d 0 and blood was collected on d -45, -21, -14, -10, -7, -3, 0, 3, 7, 10, 14, 23, 65, and 105 for analyses of TM and biomarkers. Concentrations of TM were also investigated in the liver (d 105), milk (d 7, 23, 65, 105), urine (d -21, 21, 65, 105), ruminal fluid and feces (d -21, 21, 65). Incidence of clinical and subclinical health conditions were evaluated. Complete replacement of ITM by OTM resulted in greater concentration of selenium (Se) in serum (0.084 vs. 0.086 µg/mL; P < 0.01), milk (0.24 vs. 0.31 µg/g; P < 0.01), and ruminal fluid (0.54 vs. 0.58 µg/g; P = 0.06), and reduced concentration of Se in urine (1.54 vs. 1.23 µg/g; P<0.01). For concentration of Co in serum, an interaction between treatment and time was detected (P < 0.01). Cows supplemented with OTM had greater concentrations of Co on d -7 and 0 (0.30 vs. 0.33 ng/mL; P < 0.01) but lower concentrations of Co on d 23, 65, and 105 (0.34 vs. 0.31 ng/mL; P < 0.05), in addition to reduced concentration of Co in feces (1.08 vs. 0.99 µg/g; P = 0.04) and, for multiparous only, in urine (0.019 vs. 0.014 µg/g; P < 0.01). Cows supplemented with OTM had lower postpartum concentrations of glutamate dehydrogenase (20.8 vs. 17.8 U/L; P < 0.05) and higher albumin on d -10 (36.0 vs. 36.7 g/L; P = 0.04) and 23 (36.9 vs. 37.6 g/L; P = 0.03) relative to calving. Primiparous cows fed OTM had lower concentration of ceruloplasmin in plasma (55 vs. 51 mg/L; P ≤ 0.05). Cows supplemented with OTM had less incidence of lameness (14% vs. 7%; P = 0.05), elevated nonesterified fatty acids (NEFA) (61% vs. 44%; P < 0.01), and multiple metabolic problems (35% vs. 20%; P < 0.01). Despite the lack of differences in Cu, Mn, and Zn concentrations and antioxidant capacity, complete replacement of ITM by OTM altered concentrations of Se and Co, supported liver and hoof health, and reduced the risk of postpartum elevated NEFA.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1525-3163
Volume :
101
Database :
MEDLINE
Journal :
Journal of animal science
Publication Type :
Academic Journal
Accession number :
36734127
Full Text :
https://doi.org/10.1093/jas/skad041