Back to Search Start Over

Genomic Underpinnings of Population Persistence in Isle Royale Moose.

Authors :
Kyriazis CC
Beichman AC
Brzeski KE
Hoy SR
Peterson RO
Vucetich JA
Vucetich LM
Lohmueller KE
Wayne RK
Source :
Molecular biology and evolution [Mol Biol Evol] 2023 Feb 03; Vol. 40 (2).
Publication Year :
2023

Abstract

Island ecosystems provide natural laboratories to assess the impacts of isolation on population persistence. However, most studies of persistence have focused on a single species, without comparisons to other organisms they interact with in the ecosystem. The case study of moose and gray wolves on Isle Royale allows for a direct contrast of genetic variation in isolated populations that have experienced dramatically differing population trajectories over the past decade. Whereas the Isle Royale wolf population recently declined nearly to extinction due to severe inbreeding depression, the moose population has thrived and continues to persist, despite having low genetic diversity and being isolated for ∼120 years. Here, we examine the patterns of genomic variation underlying the continued persistence of the Isle Royale moose population. We document high levels of inbreeding in the population, roughly as high as the wolf population at the time of its decline. However, inbreeding in the moose population manifests in the form of intermediate-length runs of homozygosity suggestive of historical inbreeding and purging, contrasting with the long runs of homozygosity observed in the smaller wolf population. Using simulations, we confirm that substantial purging has likely occurred in the moose population. However, we also document notable increases in genetic load, which could eventually threaten population viability over the long term. Overall, our results demonstrate a complex relationship between inbreeding, genetic diversity, and population viability that highlights the use of genomic datasets and computational simulation tools for understanding the factors enabling persistence in isolated populations.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)

Details

Language :
English
ISSN :
1537-1719
Volume :
40
Issue :
2
Database :
MEDLINE
Journal :
Molecular biology and evolution
Publication Type :
Academic Journal
Accession number :
36729989
Full Text :
https://doi.org/10.1093/molbev/msad021