Back to Search Start Over

Infancy-onset diabetes caused by de-regulated AMPylation of the human endoplasmic reticulum chaperone BiP.

Authors :
Perera LA
Hattersley AT
Harding HP
Wakeling MN
Flanagan SE
Mohsina I
Raza J
Gardham A
Ron D
De Franco E
Source :
EMBO molecular medicine [EMBO Mol Med] 2023 Mar 08; Vol. 15 (3), pp. e16491. Date of Electronic Publication: 2023 Jan 27.
Publication Year :
2023

Abstract

Dysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain-containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICD <superscript>R371S</superscript> mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICD <superscript>R371S</superscript> or knock-in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de-regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.<br /> (© 2023 The Authors. Published under the terms of the CC BY 4.0 license.)

Details

Language :
English
ISSN :
1757-4684
Volume :
15
Issue :
3
Database :
MEDLINE
Journal :
EMBO molecular medicine
Publication Type :
Academic Journal
Accession number :
36704923
Full Text :
https://doi.org/10.15252/emmm.202216491