Back to Search Start Over

Non-invasive intravenous administration of AAV9 transducing iduronate sulfatase leads to global metabolic correction and prevention of neurologic deficits in a mouse model of Hunter syndrome.

Authors :
Laoharawee K
Podetz-Pedersen KM
Nguyen TT
Singh SM
Smith MC
Belur LR
Low WC
Kozarsky KF
McIvor RS
Source :
Molecular genetics and metabolism reports [Mol Genet Metab Rep] 2023 Jan 20; Vol. 34, pp. 100956. Date of Electronic Publication: 2023 Jan 20 (Print Publication: 2023).
Publication Year :
2023

Abstract

Hunter syndrome is a rare x-linked recessive genetic disorder that affects lysosomal metabolism due to deficiency of iduronate-2-sulfatase (IDS), with subsequent accumulation of glycosaminoglycans heparan and dermatan sulfates (GAG). Enzyme replacement therapy is the only FDA-approved remedy and is an expensive life-time treatment that alleviates some symptoms of the disease without neurocognitive benefit. We previously reported successful treatment in a mouse model of mucopolysaccharidosis type II (MPS II) using adeno-associated viral vector serotype 9 encoding human IDS (AAV9.hIDS) via intracerebroventricular injection. As a less invasive and more straightforward procedure, here we report intravenously administered AAV9.hIDS in a mouse model of MPS II. In animals administered 1.5 × 10 <superscript>12</superscript> vg of AAV9.hIDS at 2 months of age, we observed supraphysiological levels of IDS enzyme activity in the circulation (up to 9100-fold higher than wild-type), in the tested peripheral organs (up to 560-fold higher than wild-type), but only 4% to 50% of wild type levels in the CNS. GAG levels were normalized on both sides of the blood-brain-barrier (BBB) in most of tissues tested. Despite low levels of the IDS observed in the CNS, this treatment prevented neurocognitive decline as shown by testing in the Barnes maze and by fear conditioning. This study demonstrates that a single dose of IV-administered AAV9.hIDS may be an effective and non-invasive procedure to treat MPS II that benefits both sides of the BBB, with implications for potential use of IV-administered AAV9 for other neuronopathic lysosomal diseases.<br /> (© 2023 Published by Elsevier Inc.)

Details

Language :
English
ISSN :
2214-4269
Volume :
34
Database :
MEDLINE
Journal :
Molecular genetics and metabolism reports
Publication Type :
Academic Journal
Accession number :
36704405
Full Text :
https://doi.org/10.1016/j.ymgmr.2023.100956