Back to Search Start Over

Response of occurrence in microplastics and its adsorped cadmium capacity to simulated agricultural environmental scenarios in sludge-amended soil.

Authors :
Li XY
Lin JY
Zhang J
Liu HT
Source :
Environmental research [Environ Res] 2023 Apr 01; Vol. 222, pp. 115346. Date of Electronic Publication: 2023 Jan 23.
Publication Year :
2023

Abstract

Large amounts of microplastics (MPs) enter the soil along with the amendment of sludge to soil. However, it is still unclear about the response of MPs occurrence and the adsorption behaviors of cadmium (Cd)on MPs to typical agricultural environmental scenarios. In present work, three kinds of MPs (polyethylene, polypropylene, and polystyrene) were chosen to investigate that response in three agricultural environmental scenarios with sludge-amended soil, including dry-wet alteration (7 d, five cycles), microbial addition (Bacillus subtilis, 0.05 g/g soil), and Ultraviolet (UV) irradiation (340 nm, 4 × 15 W, 4 d). The results showed that there was the highest adsorption capacity of Cd on MPs (36.21, 45.15, 12.43 μg/g for PE, PP, PS, respectively) after UV irradiation exceeding those from MPs triggered by other two scenarios). UV irradiation caused an increase in the abundance of Streptomyces, an expansion in specific surface area, a significant change in surface morphologies, an improvement in crystallinity or the formation of new crystals, and an enhancement in C-O and CO content, and then resulted in the incremental adsorption capacity of Cd on MPs. The findings are important of significance for controlling the environmental risks from sludge MPs via carrying heavy metals in the soil-plant systems.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1096-0953
Volume :
222
Database :
MEDLINE
Journal :
Environmental research
Publication Type :
Academic Journal
Accession number :
36702189
Full Text :
https://doi.org/10.1016/j.envres.2023.115346