Back to Search Start Over

The membrane activity of the antimicrobial peptide caerin 1.1 is pH dependent.

Authors :
Sani MA
Le Brun AP
Rajput S
Attard T
Separovic F
Source :
Biophysical journal [Biophys J] 2023 Mar 21; Vol. 122 (6), pp. 1058-1067. Date of Electronic Publication: 2023 Jan 20.
Publication Year :
2023

Abstract

Antimicrobial peptides are an important class of membrane-active peptides that can provide alternatives or complements to classic antibiotics. Among the many classes of AMPs, the histidine-rich family is of particular interest since they may induce pH-sensitive interactions with cell membranes. The AMP caerin 1.1 (Cae-1), from Australian tree frogs, has three histidine residues, and thus we studied the pH dependence of its interactions with model cell membranes. Using NMR spectroscopy and molecular dynamics simulations, we showed that Cae-1 induced greater perturbation of the lipid dynamics and water penetrations within the membrane interior in an acidic environment compared with physiological conditions. Using <superscript>31</superscript> P solid-state NMR, the packing, chemical environment, and dynamics of the lipid headgroup were monitored. <superscript>2</superscript> H solid-state NMR showed that Cae-1 ordered the acyl chains of the hydrophobic core of the bilayer. These results supported the molecular dynamics data, which showed that Cae-1 was mainly inserted within the lipid bilayer for both neutral and negatively charged membranes, with the charged residues pulling the water and phosphate groups inward. This could be an early step in the mechanism of membrane disruption by histidine-rich antimicrobial peptides and indicated that Cae-1 acts via a transmembrane mechanism in bilayers of neutral and anionic phospholipid membranes, especially in acidic conditions.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1542-0086
Volume :
122
Issue :
6
Database :
MEDLINE
Journal :
Biophysical journal
Publication Type :
Academic Journal
Accession number :
36680343
Full Text :
https://doi.org/10.1016/j.bpj.2023.01.021