Back to Search
Start Over
Pan-cancer antagonistic inhibition pattern of ATM-driven G2/M checkpoint pathway vs other DNA repair pathways.
- Source :
-
DNA repair [DNA Repair (Amst)] 2023 Mar; Vol. 123, pp. 103448. Date of Electronic Publication: 2023 Jan 13. - Publication Year :
- 2023
-
Abstract
- DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.<br />Competing Interests: Conflict of interest statement Authors Anton Buzdin and Andrew Garazha were employed by the company OmicsWay Corp., and Victor Tkachev, Andrew Garazha, and Maxim Sorokin were employed by the company Oncobox Ltd. The remaining authors have only academic or clinical affiliations. All the authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1568-7856
- Volume :
- 123
- Database :
- MEDLINE
- Journal :
- DNA repair
- Publication Type :
- Academic Journal
- Accession number :
- 36657260
- Full Text :
- https://doi.org/10.1016/j.dnarep.2023.103448