Back to Search Start Over

Nighttime Continuous Contactless Smartphone-Based Cough Monitoring for the Ward: Validation Study.

Authors :
Barata F
Cleres D
Tinschert P
Iris Shih CH
Rassouli F
Boesch M
Brutsche M
Fleisch E
Source :
JMIR formative research [JMIR Form Res] 2023 Feb 20; Vol. 7, pp. e38439. Date of Electronic Publication: 2023 Feb 20.
Publication Year :
2023

Abstract

Background: Clinical deterioration can go unnoticed in hospital wards for hours. Mobile technologies such as wearables and smartphones enable automated, continuous, noninvasive ward monitoring and allow the detection of subtle changes in vital signs. Cough can be effectively monitored through mobile technologies in the ward, as it is not only a symptom of prevalent respiratory diseases such as asthma, lung cancer, and COVID-19 but also a predictor of acute health deterioration. In past decades, many efforts have been made to develop an automatic cough counting tool. To date, however, there is neither a standardized, sufficiently validated method nor a scalable cough monitor that can be deployed on a consumer-centric device that reports cough counts continuously. These shortcomings limit the tracking of coughing and, consequently, hinder the monitoring of disease progression in prevalent respiratory diseases such as asthma, chronic obstructive pulmonary disease, and COVID-19 in the ward.<br />Objective: This exploratory study involved the validation of an automated smartphone-based monitoring system for continuous cough counting in 2 different modes in the ward. Unlike previous studies that focused on evaluating cough detection models on unseen data, the focus of this work is to validate a holistic smartphone-based cough detection system operating in near real time.<br />Methods: Automated cough counts were measured consistently on devices and on computers and compared with cough and noncough sounds counted manually over 8-hour long nocturnal recordings in 9 patients with pneumonia in the ward. The proposed cough detection system consists primarily of an Android app running on a smartphone that detects coughs and records sounds and secondarily of a backend that continuously receives the cough detection information and displays the hourly cough counts. Cough detection is based on an ensemble convolutional neural network developed and trained on asthmatic cough data.<br />Results: In this validation study, a total of 72 hours of recordings from 9 participants with pneumonia, 4 of whom were infected with SARS-CoV-2, were analyzed. All the recordings were subjected to manual analysis by 2 blinded raters. The proposed system yielded a sensitivity and specificity of 72% and 99% on the device and 82% and 99% on the computer, respectively, for detecting coughs. The mean differences between the automated and human rater cough counts were -1.0 (95% CI -12.3 to 10.2) and -0.9 (95% CI -6.5 to 4.8) coughs per hour within subject for the on-device and on-computer modes, respectively.<br />Conclusions: The proposed system thus represents a smartphone cough counter that can be used for continuous hourly assessment of cough frequency in the ward.<br /> (©Filipe Barata, David Cleres, Peter Tinschert, Chen-Hsuan Iris Shih, Frank Rassouli, Maximilian Boesch, Martin Brutsche, Elgar Fleisch. Originally published in JMIR Formative Research (https://formative.jmir.org), 20.02.2023.)

Details

Language :
English
ISSN :
2561-326X
Volume :
7
Database :
MEDLINE
Journal :
JMIR formative research
Publication Type :
Academic Journal
Accession number :
36655551
Full Text :
https://doi.org/10.2196/38439