Back to Search Start Over

Low-count whole-body PET/MRI restoration: an evaluation of dose reduction spectrum and five state-of-the-art artificial intelligence models.

Authors :
Wang YJ
Wang P
Adams LC
Sheybani ND
Qu L
Sarrami AH
Theruvath AJ
Gatidis S
Ho T
Zhou Q
Pribnow A
Thakor AS
Rubin D
Daldrup-Link HE
Source :
European journal of nuclear medicine and molecular imaging [Eur J Nucl Med Mol Imaging] 2023 Apr; Vol. 50 (5), pp. 1337-1350. Date of Electronic Publication: 2023 Jan 12.
Publication Year :
2023

Abstract

Purpose: To provide a holistic and complete comparison of the five most advanced AI models in the augmentation of low-dose <superscript>18</superscript> F-FDG PET data over the entire dose reduction spectrum.<br />Methods: In this multicenter study, five AI models were investigated for restoring low-count whole-body PET/MRI, covering convolutional benchmarks - U-Net, enhanced deep super-resolution network (EDSR), generative adversarial network (GAN) - and the most cutting-edge image reconstruction transformer models in computer vision to date - Swin transformer image restoration network (SwinIR) and EDSR-ViT (vision transformer). The models were evaluated against six groups of count levels representing the simulated 75%, 50%, 25%, 12.5%, 6.25%, and 1% (extremely ultra-low-count) of the clinical standard 3 MBq/kg <superscript>18</superscript> F-FDG dose. The comparisons were performed upon two independent cohorts - (1) a primary cohort from Stanford University and (2) a cross-continental external validation cohort from Tübingen University - in order to ensure the findings are generalizable. A total of 476 original count and simulated low-count whole-body PET/MRI scans were incorporated into this analysis.<br />Results: For low-count PET restoration on the primary cohort, the mean structural similarity index (SSIM) scores for dose 6.25% were 0.898 (95% CI, 0.887-0.910) for EDSR, 0.893 (0.881-0.905) for EDSR-ViT, 0.873 (0.859-0.887) for GAN, 0.885 (0.873-0.898) for U-Net, and 0.910 (0.900-0.920) for SwinIR. In continuation, SwinIR and U-Net's performances were also discreetly evaluated at each simulated radiotracer dose levels. Using the primary Stanford cohort, the mean diagnostic image quality (DIQ; 5-point Likert scale) scores of SwinIR restoration were 5 (SD, 0) for dose 75%, 4.50 (0.535) for dose 50%, 3.75 (0.463) for dose 25%, 3.25 (0.463) for dose 12.5%, 4 (0.926) for dose 6.25%, and 2.5 (0.534) for dose 1%.<br />Conclusion: Compared to low-count PET images, with near-to or nondiagnostic images at higher dose reduction levels (up to 6.25%), both SwinIR and U-Net significantly improve the diagnostic quality of PET images. A radiotracer dose reduction to 1% of the current clinical standard radiotracer dose is out of scope for current AI techniques.<br /> (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1619-7089
Volume :
50
Issue :
5
Database :
MEDLINE
Journal :
European journal of nuclear medicine and molecular imaging
Publication Type :
Academic Journal
Accession number :
36633614
Full Text :
https://doi.org/10.1007/s00259-022-06097-w