Back to Search Start Over

Energy transfer mediated rapid and visual discrimination of tetracyclines and quercetin in food by using N, Cu Co-doped carbon dots.

Authors :
Li T
Guo G
Xing H
Wang Y
Luo X
Wang L
Gu C
Hou Y
Chen D
Source :
Analytica chimica acta [Anal Chim Acta] 2023 Jan 25; Vol. 1239, pp. 340706. Date of Electronic Publication: 2022 Dec 07.
Publication Year :
2023

Abstract

The appearance of multi-drug resistant Escherichia coli makes the combination of tetracyclines (TCs) and quercetin (QCT) more common to fight stubborn bacterial infections so that the effective detections of TCs and QCT are essential and necessary. Here, a novel fluorescence probe for differentiating TCs and QCT is developed based on the nitrogen and copper co-doped carbon dots (N, Cu-CDs). The N, Cu-CDs are prepared from ethylene diamine tetraacetic acid (EDTA) and anhydrous copper chloride as precursors through hydrothermal process and exhibit bright blue fluorescence with excellent optical stability. With the presence of four tetracyclines (DOX, TC, CTC and OTC), the fluorescence intensity of N, Cu-CDs is quenched directly due to the internal filtration effect (IFE), and the detection limit obtained through single-signal fluorescence sensing is as low as 23.8 nM for DOX, 37.2 nM for TC, 43.8 nM for OTC and 28.8 nM for CTC. More remarkably, three dimensional ratiometric fluorescence probe for detecting QCT is proposed based on the appearance of another emission at (410 nm, 490 nm) due to electron transform (ET) process. This new method shows a good linear relationship in the range of 10-100 μM with a low detection limit of 59.3 nM. Furthermore, a dual-channel fluorescence sensing platform based on microfluidics paper-based analytical devices (μPADs) is developed for simultaneously visual discrimination of TCs (DOX is chosen as the typical detecting model for TCs) and QCT. This investigation provides a new way for the development of CDs as multifunction fluorescence probes.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-4324
Volume :
1239
Database :
MEDLINE
Journal :
Analytica chimica acta
Publication Type :
Academic Journal
Accession number :
36628714
Full Text :
https://doi.org/10.1016/j.aca.2022.340706