Back to Search
Start Over
Verification and Analysis of Filter Paper-Based Intracellular Delivery of Exogenous Substances.
- Source :
-
Analytical chemistry [Anal Chem] 2023 Mar 07; Vol. 95 (9), pp. 4353-4361. Date of Electronic Publication: 2023 Jan 09. - Publication Year :
- 2023
-
Abstract
- The intracellular delivery of exogenous substances is an essential technical means in the field of biomedical research, including cell therapy and gene editing. Although many delivery technologies and strategies are present, each technique has its own limitations. The delivery cost is usually a major limiting factor for general laboratories. In addition, simplifying the operation process and shortening the delivery time are key challenges. Here, we develop a filter paper-syringe (FPS) delivery method, a new type of cell permeation approach based on filter paper. The cells in a syringe are forced to pass through the filter paper quickly. During this process, external pressure forces the cells to collide and squeeze with the fiber matrix of the filter paper, causing the cells to deform rapidly, thereby enhancing the permeability of the cell membrane and realizing the delivery of exogenous substances. Moreover, the large gap between the fiber networks of filter paper can prevent the cells from bearing high pressure, thus maintaining high cell vitality. Results showed that the slow-speed filter paper used can realize efficient intracellular delivery of various exogenous substances, especially small molecular substances (e.g., 3-5 kDa dextran and siRNA). Meanwhile, we found that the FPS method not only does not require a lengthy operating step compared with the widely used liposomal delivery of siRNA but also that the delivery efficiency is similar. In conclusion, the FPS approach is a simple, easy-to-operate, and fast (about 2 s) delivery method and may be an attractive alternative to membrane destruction-based transfection.
- Subjects :
- Cell Membrane
Transfection
Filtration
Subjects
Details
- Language :
- English
- ISSN :
- 1520-6882
- Volume :
- 95
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Analytical chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 36623324
- Full Text :
- https://doi.org/10.1021/acs.analchem.2c04675