Back to Search
Start Over
Wasp-stung rat model translationally expresses the coagulopathy manifestations of human wasp patients.
- Source :
-
Human & experimental toxicology [Hum Exp Toxicol] 2023 Jan-Dec; Vol. 42, pp. 9603271221149013. - Publication Year :
- 2023
-
Abstract
- Two over 80 wasp stings male victims appeared severe abnormal coagulation were consecutively examined by thromboelastography (TEG) guided with heparinase during hospitalization. However, the cause of coagulopathy remains unsolved. Rats were applied to establish a wasp-stung animal model highly resembled the manifestations of wasp-stung patients. According body surface area conversion, Sprague-Dawley rats were stung based on wasp sting numbers (0, 4, 8, 12 stings; n = 6 each) with various exposure times (0, 1, 3, 6 h) to determine the simulation of coagulopathy. The blood R, K values, and angle degree of wasp-stung rats were measured by TEG. The TEG profiles of stung rats were found to be concomitant with that of wasp-stung patients. Data showed that the endogenous heparinization of rats was time-dependent. Compared to the TEG profile of eight stings given rat, the coagulation time of 2 mm clot formation at 3 h (R value) was longer than that at 0 h. The coagulation time was prolonged with increasing sting numbers when compared to the various stings at 1, 3, and 6 h exposed. Interestingly, there was observed the peak coagulation at 3 h of eight stings. The Ck-standard and Ck-heparinase at 3 h after 8 stings given were R: 9.6-4.4 min; K: 3.8-1.8 min; angle degree: 49.8-68.0, respectively. The original data of R, K values and angle degree in two wasp-stung victims were 11.7-13.6 min, 4.3-5.5 min, and 41.2-32.8° in CK-standard, respectively; whereas those of the CK-heparinase groups were 5.6-6.7 min, 2.4-2.5 min, and 59.5-58.8°, correspondingly. Conclusively, this massive wasp-stung animal model can be applied to the investigations of pathogenesis and provides a clinical strategy or guideline for clinical intervention.
Details
- Language :
- English
- ISSN :
- 1477-0903
- Volume :
- 42
- Database :
- MEDLINE
- Journal :
- Human & experimental toxicology
- Publication Type :
- Academic Journal
- Accession number :
- 36623279
- Full Text :
- https://doi.org/10.1177/09603271221149013