Back to Search Start Over

Role of Machine Learning (ML)-Based Classification Using Conventional 18 F-FDG PET Parameters in Predicting Postsurgical Features of Endometrial Cancer Aggressiveness.

Authors :
Bezzi C
Bergamini A
Mathoux G
Ghezzo S
Monaco L
Candotti G
Fallanca F
Gajate AMS
Rabaiotti E
Cioffi R
Bocciolone L
Gianolli L
Taccagni G
Candiani M
Mangili G
Mapelli P
Picchio M
Source :
Cancers [Cancers (Basel)] 2023 Jan 03; Vol. 15 (1). Date of Electronic Publication: 2023 Jan 03.
Publication Year :
2023

Abstract

Purpose: to investigate the preoperative role of ML-based classification using conventional <superscript>18</superscript> F-FDG PET parameters and clinical data in predicting features of EC aggressiveness.<br />Methods: retrospective study, including 123 EC patients who underwent <superscript>18</superscript> F-FDG PET (2009-2021) for preoperative staging. Maximum standardized uptake value (SUVmax), SUVmean, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) were computed on the primary tumour. Age and BMI were collected. Histotype, myometrial invasion (MI), risk group, lymph-nodal involvement (LN), and p53 expression were retrieved from histology. The population was split into a train and a validation set (80-20%). The train set was used to select relevant parameters (Mann-Whitney U test; ROC analysis) and implement ML models, while the validation set was used to test prediction abilities.<br />Results: on the validation set, the best accuracies obtained with individual parameters and ML were: 61% (TLG) and 87% (ML) for MI; 71% (SUVmax) and 79% (ML) for risk groups; 72% (TLG) and 83% (ML) for LN; 45% (SUVmax; SUVmean) and 73% (ML) for p53 expression.<br />Conclusions: ML-based classification using conventional <superscript>18</superscript> F-FDG PET parameters and clinical data demonstrated ability to characterize the investigated features of EC aggressiveness, providing a non-invasive way to support preoperative stratification of EC patients.

Details

Language :
English
ISSN :
2072-6694
Volume :
15
Issue :
1
Database :
MEDLINE
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
36612321
Full Text :
https://doi.org/10.3390/cancers15010325