Back to Search Start Over

An optimized GAN method based on the Que-Attn and contrastive learning for underwater image enhancement.

Authors :
Lan Z
Zhou B
Zhao W
Wang S
Source :
PloS one [PLoS One] 2023 Jan 06; Vol. 18 (1), pp. e0279945. Date of Electronic Publication: 2023 Jan 06 (Print Publication: 2023).
Publication Year :
2023

Abstract

Research on underwater image processing has increased significantly in the past decade due to the precious resources that exist underwater. However, it is still a challenging problem to restore degraded underwater images. Existing prior-based methods show limited performance in many cases due to their reliance on hand-crafted features. Therefore, in this paper, we propose an effective unsupervised generative adversarial network(GAN) for underwater image restoration. Specifically, we embed the idea of contrastive learning into the model. The method encourages two elements (corresponding patches) to map the similar points in the learned feature space relative to other elements (other patches) in the data set, and maximizes the mutual information between input and output through PatchNCE loss. We design a query attention (Que-Attn) module, which compares feature distances in the source domain, and gives an attention matrix and probability distribution for each row. We then select queries based on their importance measure calculated from the distribution. We also verify its generalization performance on several benchmark datasets. Experiments and comparison with the state-of-the-art methods show that our model outperforms others.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2023 Lan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
1932-6203
Volume :
18
Issue :
1
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
36607967
Full Text :
https://doi.org/10.1371/journal.pone.0279945