Back to Search Start Over

Targeting peroxisomal fatty acid oxidation improves hepatic steatosis and insulin resistance in obese mice.

Authors :
Yao H
Wang Y
Zhang X
Li P
Shang L
Chen X
Zeng J
Source :
The Journal of biological chemistry [J Biol Chem] 2023 Feb; Vol. 299 (2), pp. 102845. Date of Electronic Publication: 2022 Dec 28.
Publication Year :
2023

Abstract

Obesity and diabetes normally cause mitochondrial dysfunction and hepatic lipid accumulation, while fatty acid synthesis is suppressed and malonyl-CoA is depleted in the liver of severe obese or diabetic animals. Therefore, a negative regulatory mechanism might work for the control of mitochondrial fatty acid metabolism that is independent of malonyl-CoA in the diabetic animals. As mitochondrial β-oxidation is controlled by the acetyl-CoA/CoA ratio, and the acetyl-CoA generated in peroxisomal β-oxidation could be transported into mitochondria via carnitine shuttles, we hypothesize that peroxisomal β-oxidation might play a role in regulating mitochondrial fatty acid oxidation and inducing hepatic steatosis under the condition of obesity or diabetes. This study reveals a novel mechanism by which peroxisomal β-oxidation controls mitochondrial fatty acid oxidation in diabetic animals. We determined that excessive oxidation of fatty acids by peroxisomes generates considerable acetyl-carnitine in the liver of diabetic mice, which significantly elevates the mitochondrial acetyl-CoA/CoA ratio and causes feedback suppression of mitochondrial β-oxidation. Additionally, we found that specific suppression of peroxisomal β-oxidation enhances mitochondrial fatty acid oxidation by reducing acetyl-carnitine formation in the liver of obese mice. In conclusion, we suggest that induction of peroxisomal fatty acid oxidation serves as a mechanism for diabetes-induced hepatic lipid accumulation. Targeting peroxisomal β-oxidation might be a promising pathway in improving hepatic steatosis and insulin resistance as induced by obesity or diabetes.<br />Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.<br /> (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1083-351X
Volume :
299
Issue :
2
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
36586435
Full Text :
https://doi.org/10.1016/j.jbc.2022.102845