Back to Search
Start Over
SeqCP: A sequence-based algorithm for searching circularly permuted proteins.
- Source :
-
Computational and structural biotechnology journal [Comput Struct Biotechnol J] 2022 Nov 14; Vol. 21, pp. 185-201. Date of Electronic Publication: 2022 Nov 14 (Print Publication: 2023). - Publication Year :
- 2022
-
Abstract
- Circular permutation (CP) is a protein sequence rearrangement in which the amino- and carboxyl-termini of a protein can be created in different positions along the imaginary circularized sequence. Circularly permutated proteins usually exhibit conserved three-dimensional structures and functions. By comparing the structures of circular permutants (CPMs), protein research and bioengineering applications can be approached in ways that are difficult to achieve by traditional mutagenesis. Most current CP detection algorithms depend on structural information. Because there is a vast number of proteins with unknown structures, many CP pairs may remain unidentified. An efficient sequence-based CP detector will help identify more CP pairs and advance many protein studies. For instance, some hypothetical proteins may have CPMs with known functions and structures that are informative for functional annotation, but existing structure-based CP search methods cannot be applied when those hypothetical proteins lack structural information. Despite the considerable potential for applications, sequence-based CP search methods have not been well developed. We present a sequence-based method, SeqCP, which analyzes normal and duplicated sequence alignments to identify CPMs and determine candidate CP sites for proteins. SeqCP was trained by data obtained from the Circular Permutation Database and tested with nonredundant datasets from the Protein Data Bank. It shows high reliability in CP identification and achieves an AUC of 0.9. SeqCP has been implemented into a web server available at: http://pcnas.life.nthu.edu.tw/SeqCP/.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2022 The Authors.)
Details
- Language :
- English
- ISSN :
- 2001-0370
- Volume :
- 21
- Database :
- MEDLINE
- Journal :
- Computational and structural biotechnology journal
- Publication Type :
- Academic Journal
- Accession number :
- 36582435
- Full Text :
- https://doi.org/10.1016/j.csbj.2022.11.024