Back to Search Start Over

Dynamic regulation of gonadal transposon control across the lifespan of the naturally short-lived African turquoise killifish.

Authors :
Teefy BB
Adler A
Xu A
Hsu K
Singh PP
Benayoun BA
Source :
Genome research [Genome Res] 2023 Jan; Vol. 33 (1), pp. 141-153. Date of Electronic Publication: 2022 Dec 28.
Publication Year :
2023

Abstract

Although germline cells are considered to be functionally "immortal," both the germline and supporting somatic cells in the gonad within an organism experience aging. With increased age at parenthood, the age-related decline in reproductive success has become an important biological issue for an aging population. However, molecular mechanisms underlying reproductive aging across sexes in vertebrates remain poorly understood. To decipher molecular drivers of vertebrate gonadal aging across sexes, we perform longitudinal characterization of the gonadal transcriptome throughout the lifespan in the naturally short-lived African turquoise killifish ( Nothobranchius furzeri ). By combining mRNA-seq and small RNA-seq from 26 individuals, we characterize the aging gonads of young-adult, middle-aged, and old female and male fish. We analyze changes in transcriptional patterns of genes, transposable elements (TEs), and piRNAs. We find that testes seem to undergo only marginal changes during aging. In contrast, in middle-aged ovaries, the time point associated with peak female fertility in this strain, PIWI pathway components are transiently down-regulated, TE transcription is elevated, and piRNA levels generally decrease, suggesting that egg quality may already be declining at middle-age. Furthermore, we show that piRNA ping-pong biogenesis declines steadily with age in ovaries, whereas it is maintained in aging testes. To our knowledge, this data set represents the most comprehensive transcriptomic data set for vertebrate gonadal aging. This resource also highlights important pathways that are regulated during reproductive aging in either ovaries or testes, which could ultimately be leveraged to help restore aspects of youthful reproductive function.<br /> (© 2023 Teefy et al.; Published by Cold Spring Harbor Laboratory Press.)

Details

Language :
English
ISSN :
1549-5469
Volume :
33
Issue :
1
Database :
MEDLINE
Journal :
Genome research
Publication Type :
Academic Journal
Accession number :
36577520
Full Text :
https://doi.org/10.1101/gr.277301.122