Back to Search Start Over

Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature.

Authors :
Fang JY
Zheng QZ
Lou YY
Zhao KM
Hu SN
Li G
Akdim O
Huang XY
Sun SG
Source :
Nature communications [Nat Commun] 2022 Dec 22; Vol. 13 (1), pp. 7899. Date of Electronic Publication: 2022 Dec 22.
Publication Year :
2022

Abstract

The development of electrocatalysts capable of efficient reduction of nitrate (NO <subscript>3</subscript> <superscript>-</superscript> ) to ammonia (NH <subscript>3</subscript> ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO <subscript>2</subscript> <superscript>-</superscript> via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO <subscript>x</subscript> <superscript>-</superscript> adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm <superscript>-2</superscript> at -0.2 V vs. Reversible Hydrogen Electrode. The NH <subscript>3</subscript> production rate reaches a high activity of 4.8 mmol cm <superscript>-2</superscript> h <superscript>-1</superscript> (960 mmol g <subscript>cat</subscript> <superscript>-1</superscript> h <superscript>-1</superscript> ). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO <subscript>3</subscript> <superscript>-</superscript> to NH <subscript>3</subscript> via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO <subscript>3</subscript> led simultaneously to high NH <subscript>3</subscript> selectivity and yield.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
36550156
Full Text :
https://doi.org/10.1038/s41467-022-35533-6