Back to Search Start Over

Impacts of climate and tree morphology on tree-ring stable isotopes in central Mongolia.

Authors :
Leland C
Andreu-Hayles L
Cook ER
Anchukaitis KJ
Byambasuren O
Davi N
Hessl A
Martin-Benito D
Nachin B
Pederson N
Source :
Tree physiology [Tree Physiol] 2023 Apr 12; Vol. 43 (4), pp. 539-555.
Publication Year :
2023

Abstract

Recent climate extremes in Mongolia have ignited a renewed interest in understanding past climate variability over centennial and longer time scales across north-central Asia. Tree-ring width records have been extensively studied in Mongolia as proxies for climate reconstruction, however, the climate and environmental signals of tree-ring stable isotopes from this region need to be further explored. Here, we evaluated a 182-year record of tree-ring δ13C and δ18O from Siberian Pine (Pinus sibirica Du Tour) from a xeric site in central Mongolia (Khorgo Lava) to elucidate the environmental factors modulating these parameters. First, we analyzed the climate sensitivity of tree-ring δ13C and δ18O at Khorgo Lava for comparison with ring-width records, which have been instrumental in reconstructing hydroclimate in central Mongolia over two millennia. We also compared stable isotope records of trees with partial cambial dieback ('strip-bark morphology'), a feature of long-lived conifers growing on resource-limited sites, and trees with a full cambium ('whole-bark morphology'), to assess the inferred leaf-level physiological behavior of these trees. We found that interannual variability in tree-ring δ13C and δ18O reflected summer hydroclimatic variability, and captured recent, extreme drought conditions, thereby complementing ring-width records. The tree-ring δ18O records also had a spring temperature signal and thus expanded the window of climate information recorded by these trees. Over longer time scales, strip-bark trees had an increasing trend in ring-widths, δ13C (and intrinsic water-use efficiency, iWUE) and δ18O, relative to whole-bark trees. Our results suggest that increases in iWUE at this site might be related to a combination of leaf-level physiological responses to increasing atmospheric CO2, recent drought, and stem morphological changes. Our study underscores the potential of stable isotopes for broadening our understanding of past climate in north-central Asia. However, further studies are needed to understand how stem morphological changes might impact stable isotopic trends.<br /> (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1758-4469
Volume :
43
Issue :
4
Database :
MEDLINE
Journal :
Tree physiology
Publication Type :
Academic Journal
Accession number :
36547261
Full Text :
https://doi.org/10.1093/treephys/tpac142