Back to Search
Start Over
In Vitro Activity of Cefepime-Taniborbactam and Comparators against Clinical Isolates of Gram-Negative Bacilli from 2018 to 2020: Results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program.
- Source :
-
Antimicrobial agents and chemotherapy [Antimicrob Agents Chemother] 2023 Jan 24; Vol. 67 (1), pp. e0128122. Date of Electronic Publication: 2022 Dec 21. - Publication Year :
- 2023
-
Abstract
- Taniborbactam is a novel cyclic boronate β-lactamase inhibitor in clinical development in combination with cefepime. We assessed the in vitro activity of cefepime-taniborbactam and comparators against a 2018-2020 collection of Enterobacterales ( n = 13,731) and Pseudomonas aeruginosa ( n = 4,619) isolates cultured from infected patients attending hospitals in 56 countries. MICs were determined by CLSI broth microdilution. Taniborbactam was tested at a fixed concentration of 4 μg/mL. Isolates with cefepime-taniborbactam MICs of ≥16 μg/mL underwent whole-genome sequencing. β-lactamase genes were identified in meropenem-resistant isolates by PCR/Sanger sequencing. Against Enterobacterales , taniborbactam reduced the cefepime MIC <subscript>90</subscript> value by >64-fold (from >16 to 0.25 μg/mL). At ≤16 μg/mL, cefepime-taniborbactam inhibited 99.7% of all Enterobacterales isolates; >97% of isolates with multidrug-resistant (MDR) and ceftolozane-tazobactam-resistant phenotypes; ≥90% of isolates with meropenem-resistant, difficult-to-treat-resistant (DTR), meropenem-vaborbactam-resistant, and ceftazidime-avibactam-resistant phenotypes; 100% of VIM-positive, AmpC-positive, and KPC-positive isolates; 98.7% of extended-spectrum β-lactamase (ESBL)-positive; 98.8% of OXA-48-like-positive; and 84.6% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC <subscript>90</subscript> value by 4-fold (from 32 to 8 μg/mL). At ≤16 μg/mL, cefepime-taniborbactam inhibited 97.4% of all P. aeruginosa isolates; ≥85% of isolates with meropenem-resistant, MDR, and meropenem-vaborbactam-resistant phenotypes; >75% of isolates with DTR, ceftazidime-avibactam-resistant, and ceftolozane-tazobactam-resistant phenotypes; and 87.4% of VIM-positive isolates. Multiple potential mechanisms, including carriage of IMP, certain alterations in PBP3, permeability (porin) defects, and possibly, upregulation of efflux were present in most isolates with cefepime-taniborbactam MICs of ≥16 μg/mL. We conclude that cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM metallo-β-lactamases (MBLs).
- Subjects :
- Cefepime pharmacology
Meropenem pharmacology
Tazobactam pharmacology
beta-Lactamases genetics
Pseudomonas aeruginosa
Gram-Negative Bacteria
Azabicyclo Compounds pharmacology
Microbial Sensitivity Tests
Anti-Bacterial Agents pharmacology
Anti-Bacterial Agents therapeutic use
Drug Resistance, Bacterial
Subjects
Details
- Language :
- English
- ISSN :
- 1098-6596
- Volume :
- 67
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Antimicrobial agents and chemotherapy
- Publication Type :
- Academic Journal
- Accession number :
- 36541767
- Full Text :
- https://doi.org/10.1128/aac.01281-22