Back to Search Start Over

Fe-biochar for simultaneous stabilization of chromium and arsenic in soil: Rational design and long-term performance.

Authors :
Wang L
Luo Y
Pang J
Li Y
Wu H
Jiang X
Tong J
Shi J
Source :
The Science of the total environment [Sci Total Environ] 2023 Mar 01; Vol. 862, pp. 160843. Date of Electronic Publication: 2022 Dec 12.
Publication Year :
2023

Abstract

Excess chromium (Cr) and arsenic (As) coexist in soil such as chromated copper arsenate (CCA) contaminated sites, leading to high risks of pollution. Fe-biochar with adjustable redox activity offers the possibility of simultaneous stabilization of Cr and As. Here, a series of Fe-biochar with distinct Fe/C structure were rationally produced for the remediation of Cr and As contaminated soil (BCX-Fe, X represented the biomass/Fe ratio). Adsorption tests showed that maximal adsorption of BC5-Fe for Cr(VI) and As(III) reached 73.7 and 81.3 mg/g. A 90-day soil remediation experiment indicated that the introduction of 3% (w/w) Fe-biochar reduced the leaching state of Cr(VI) by 93.8-99.7% and As by 75.2-95.6%. Under simulated groundwater erosion for 10 years and acid rain leaching for 7.5 years, the release levels of Cr(VI) and As in the BC5-Fe remediated soil could meet the groundwater class IV standard in China (Cr(VI)<0.1 mg/L, As<0.05 mg/L). Accelerated aging tests demonstrated that BC5-Fe had long-term Cr and As stabilization ability. The quenching experiment, EPR, and XPS suggested that the corrosion products of Fe dominated the adsorption and redox reactions, while the O groups acted as electron transfer stations and constituted redox microcirculation in the synchronous uptake of Cr/As. Based on these insights, we believe that our study will provide meaningful information about the application potential of Fe-biochar for the heavy metal contaminated soil remediation.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
862
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
36521603
Full Text :
https://doi.org/10.1016/j.scitotenv.2022.160843