Back to Search
Start Over
Molecular and morphological survey of Lamiaceae species in converted landscapes in Sumatra.
- Source :
-
PloS one [PLoS One] 2022 Dec 15; Vol. 17 (12), pp. e0277749. Date of Electronic Publication: 2022 Dec 15 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- Molecular biodiversity surveys have been increasingly applied in hyperdiverse tropical regions as an efficient tool for rapid species assessment of partially undiscovered fauna and flora. This is done by overcoming shortfalls in knowledge or availability of reproductive structures during the sampling period, which often represents a bottleneck for accurate specimens' identification. DNA sequencing technology is intensifying species discovery, and in combination with morphological identification, has been filling gaps in taxonomic knowledge and facilitating species inventories of tropical ecosystems. This study aimed to apply morphological taxonomy and DNA barcoding to assess the occurrence of Lamiaceae species in converted land-use systems (old-growth forest, jungle rubber, rubber, and oil palm) in Sumatra, Indonesia. In this species inventory, we detected 89 specimens of Lamiaceae from 18 species distributed in seven subfamilies from the Lamiaceae group. One third of the species identified in this study lacked sequences in the reference database for at least one of the markers used (matK, rbcL, and ITS). The three loci species-tree recovered a total of 12 out of the 18 species as monophyletic lineages and can be employed as a suitable approach for molecular species assignment in Lamiaceae. However, for taxa with a low level of interspecific genetic distance in the barcode regions used in this study, such as Vitex gamosepala Griff. and V. vestita Wall. ex Walp., or Callicarpa pentandra Roxb. and C. candidans (Burm.f.) Hochr., the use of traditional taxonomy remains indispensable. A change in species composition and decline in abundance is associated with an increase in land-use intensification at the family level (i.e., Lamiaceae), and this tendency might be constant across other plant families. For this reason, the maintenance of forest genetic resources needs to be considered for sustainable agricultural production, especially in hyperdiverse tropical regions. Additionally, with this change in species composition, accurate species identification throughout molecular assignments will become more important for conservation planning.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2022 Halmschlag et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Subjects :
- Indonesia
Rubber
Trees genetics
DNA Barcoding, Taxonomic
Ecosystem
Lamiaceae genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 17
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 36520800
- Full Text :
- https://doi.org/10.1371/journal.pone.0277749