Back to Search
Start Over
Quasi-Volatile MoS 2 Barristor Memory for 1T Compact Neuron by Correlative Charges Trapping and Schottky Barrier Modulation.
Quasi-Volatile MoS 2 Barristor Memory for 1T Compact Neuron by Correlative Charges Trapping and Schottky Barrier Modulation.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2022 Dec 28; Vol. 14 (51), pp. 57440-57448. Date of Electronic Publication: 2022 Dec 13. - Publication Year :
- 2022
-
Abstract
- Artificial neurons as the basic units of spiking neural network (SNN) have attracted increasing interest in energy-efficient neuromorphic computing. 2D transition metal dichalcogenide (TMD)-based devices have great potential for high-performance and low-power artificial neural devices, owing to their unique ion motion, interface engineering, and resistive switching behaviors. Although there are widespread applications of TMD-based artificial synapses in neural networks, TMD-based neurons are seldom reported due to the lack of bio-plausible multi-mechanisms to mimic leaking, integrating, and firing biological behaviors without external assistance. In this work, for the first time, a methodology is developed by introducing the hybrid effect of charge trapping (CT) and Schottky barrier (SB) in MoS <subscript>2</subscript> FETs for barristor memory and one-transistor (1T) compact artificial neuron realization. By correlating the CT and SB processes, quasi-volatile and resistive switching behaviors are realized on the fabricated MoS <subscript>2</subscript> FET and utilized to mimic the accumulating, leaking, and firing biological behaviors of neurons. Therefore, based on a single quasi-volatile CT-SB MoS <subscript>2</subscript> barristor memory, a 1T compact neuron of the basic leaky-integral-and-fire (LIF) function is demonstrated without a peripheral circuit. Furthermore, a spiking neural network (SNN) based on the CT-SB MoS <subscript>2</subscript> barristor neurons is simulated and implemented in pattern classification with high accuracy approaching 95.82%. This work provides a highly integrated and inherently low-energy implementation for neural networks.
- Subjects :
- Neurons physiology
Synapses physiology
Molybdenum
Neural Networks, Computer
Subjects
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 14
- Issue :
- 51
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 36512440
- Full Text :
- https://doi.org/10.1021/acsami.2c18561