Back to Search Start Over

Using genetic data to identify transmission risk factors: Statistical assessment and application to tuberculosis transmission.

Authors :
Goldstein IH
Bayer D
Barilar I
Kizito B
Matsiri O
Modongo C
Zetola NM
Niemann S
Minin VM
Shin SS
Source :
PLoS computational biology [PLoS Comput Biol] 2022 Dec 05; Vol. 18 (12), pp. e1010696. Date of Electronic Publication: 2022 Dec 05 (Print Publication: 2022).
Publication Year :
2022

Abstract

Identifying host factors that influence infectious disease transmission is an important step toward developing interventions to reduce disease incidence. Recent advances in methods for reconstructing infectious disease transmission events using pathogen genomic and epidemiological data open the door for investigation of host factors that affect onward transmission. While most transmission reconstruction methods are designed to work with densely sampled outbreaks, these methods are making their way into surveillance studies, where the fraction of sampled cases with sequenced pathogens could be relatively low. Surveillance studies that use transmission event reconstruction then use the reconstructed events as response variables (i.e., infection source status of each sampled case) and use host characteristics as predictors (e.g., presence of HIV infection) in regression models. We use simulations to study estimation of the effect of a host factor on probability of being an infection source via this multi-step inferential procedure. Using TransPhylo-a widely-used method for Bayesian estimation of infectious disease transmission events-and logistic regression, we find that low sensitivity of identifying infection sources leads to dilution of the signal, biasing logistic regression coefficients toward zero. We show that increasing the proportion of sampled cases improves sensitivity and some, but not all properties of the logistic regression inference. Application of these approaches to real world data from a population-based TB study in Botswana fails to detect an association between HIV infection and probability of being a TB infection source. We conclude that application of a pipeline, where one first uses TransPhylo and sparsely sampled surveillance data to infer transmission events and then estimates effects of host characteristics on probabilities of these events, should be accompanied by a realistic simulation study to better understand biases stemming from imprecise transmission event inference.<br />Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: SSS declares receiving consulting fees from Beckman Coulter and Hycor Biomedical on unrelated studies. All other authors have declared that no competing interests exist.<br /> (Copyright: © 2022 Goldstein et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
1553-7358
Volume :
18
Issue :
12
Database :
MEDLINE
Journal :
PLoS computational biology
Publication Type :
Academic Journal
Accession number :
36469509
Full Text :
https://doi.org/10.1371/journal.pcbi.1010696