Back to Search Start Over

Effects of Co-exposure to Fluoride and Arsenic on TRAF-6 Signaling and NF-κB Pathway of Bone Metabolism.

Authors :
Nie C
Hu J
Wang B
Li H
Yang X
Hong F
Source :
Biological trace element research [Biol Trace Elem Res] 2023 Sep; Vol. 201 (9), pp. 4447-4455. Date of Electronic Publication: 2022 Dec 02.
Publication Year :
2023

Abstract

Little is known about the combined effect of fluoride (F) and arsenic (As) on bone metabolism. This study aims to explore the effect of co-exposure to F and As on the expressions of TNF receptor-associated factor 6 (TRAF-6), nuclear factor-kappa B (NF-κB), and the related factors in cell and animal experiments. With the rats exposed to different doses of F, As, and combined F-As, we found that F exposure doses were positively correlated with the protein expression of receptor activator of nuclear factor-kappa B ligand (RANKL), receptor activator of nuclear factor-kappa B (RANK), TRAF-6, NF-κB, and nuclear factor of activated T cells (NFAT-c1) (P < 0.001). As exposure doses were negatively correlated with RANK, TRAF-6, NF-κB, and NFAT-c1 (P < 0.001). The effect of F and As interaction on the protein expression of RANKL, TRAF-6, NF-κB, and NFAT-c1 was significant in bone tissue (P < 0.05). In the cellular experiment, F could promote the mRNA expression of RANK, TRAF-6, and NFAT-c1. A higher concentration of As could inhibit the mRNA expression of Tartrate-resistant acid phosphatase (TRAP), RANK, TRAF-6, and NFAT-c1. The effect of F and As interaction on the mRNA expression of TRAP, RANK, TRAF-6, and NFATc1 in osteoclasts was significant (P < 0.001). In conclusion, the expression of TRAF-6 and NF-κB pathway was affected by F and As co-exposure in osteogenic differentiation, and As could antagonize the promoting effect of F on the expression of TRAF-6, TRAP, RANKL, RANK, NF-κB, and NFAT-c1 in these exposure levels. These results could provide a scientific basis for understanding the interaction of F and As in bone formation.<br /> (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Details

Language :
English
ISSN :
1559-0720
Volume :
201
Issue :
9
Database :
MEDLINE
Journal :
Biological trace element research
Publication Type :
Academic Journal
Accession number :
36456742
Full Text :
https://doi.org/10.1007/s12011-022-03508-9