Back to Search
Start Over
Ex vivo study of detergent-assisted intraosseous bone wash treatment of osteonecrosis.
- Source :
-
Journal of orthopaedic research : official publication of the Orthopaedic Research Society [J Orthop Res] 2023 Jul; Vol. 41 (7), pp. 1482-1493. Date of Electronic Publication: 2022 Dec 14. - Publication Year :
- 2023
-
Abstract
- Avascular necrosis (AVN) involves ischemic cell death of the bone. AVN leaves an abundance of necrotic lipids and debris in the bone marrow, which instigates inflammatory bone repair. Consequently, the necrotic bone microenvironment stimulates excessive bone resorption, leading to joint deformities and osteoarthritis. Here, we performed a detergent-assisted bone wash using poloxamer 407 (P407) to clean the necrotic bone environment by removing lipids and necrotic debris. The new concept was tested using an established ex vivo AVN model of porcine cadaver humeral heads. The P407 wash was performed using P407 solution and followed with saline via two intraosseous needles. Visual inspection and image analyses of average pixel light intensity showed that the P407 wash produced a better-cleaned bone than the saline wash. Analyses of the collected bone wash solution showed a two-fold increase in triglycerides (101 vs. 53 mmol/head, p = 0.006) and a 10-fold increase in the dry weight of the removed debris (1.34 vs. 0.13 g/head, p = 0.02) with the P407 wash compared to saline. The histological evaluation showed significantly decreased Oil-Red-O (fats) staining in the P407-washed bone compared with the saline-washed bone. The in vitro assays of Alizarin red and qPCR showed the P407 wash neither altered the osteogenic behaviors of porcine bone marrow-derived mesenchymal cells (pBMMCs) nor raised inflammatory responses of porcine bone marrow-derived macrophages (pBMMs). In conclusion, detergent-assisted bone wash using P407 produced a better removal of nonsoluble debris from the bone marrow space than the saline wash without causing changes to osteogenesis or inflammatory reactions.<br /> (© 2022 Orthopaedic Research Society. Published by Wiley Periodicals LLC.)
Details
- Language :
- English
- ISSN :
- 1554-527X
- Volume :
- 41
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
- Publication Type :
- Academic Journal
- Accession number :
- 36453529
- Full Text :
- https://doi.org/10.1002/jor.25496