Back to Search Start Over

Kinetic Features of 3'-5'-Exonuclease Activity of Apurinic/Apyrimidinic Endonuclease Apn2 from Saccharomyces cerevisiae .

Authors :
Kuznetsova AA
Gavrilova AA
Ishchenko AA
Saparbaev M
Fedorova OS
Kuznetsov NA
Source :
International journal of molecular sciences [Int J Mol Sci] 2022 Nov 19; Vol. 23 (22). Date of Electronic Publication: 2022 Nov 19.
Publication Year :
2022

Abstract

In yeast Saccharomyces cerevisiae cells, apurinic/apyrimidinic (AP) sites are primarily repaired by base excision repair. Base excision repair is initiated by one of two AP endonucleases: Apn1 or Apn2. AP endonucleases catalyze hydrolytic cleavage of the phosphodiester backbone on the 5' side of an AP site, thereby forming a single-strand break containing 3'-OH and 5'-dRP ends. In addition, Apn2 has 3'-phosphodiesterase activity (removing 3'-blocking groups) and 3' → 5' exonuclease activity (both much stronger than its AP endonuclease activity). Nonetheless, the role of the 3'-5'-exonuclease activity of Apn2 remains unclear and presumably is involved in the repair of damage containing single-strand breaks. In this work, by separating reaction products in a polyacrylamide gel and by a stopped-flow assay, we performed a kinetic analysis of the interaction of Apn2 with various model DNA substrates containing a 5' overhang. The results allowed us to propose a mechanism for the cleaving off of nucleotides and to determine the rate of the catalytic stage of the process. It was found that dissociation of a reaction product from the enzyme active site is not a rate-limiting step in the enzymatic reaction. We determined an influence of the nature of the 3'-terminal nucleotide that can be cleaved off on the course of the enzymatic reaction. Finally, it was found that the efficiency of the enzymatic reaction is context-specific.

Details

Language :
English
ISSN :
1422-0067
Volume :
23
Issue :
22
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
36430884
Full Text :
https://doi.org/10.3390/ijms232214404