Back to Search Start Over

Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration.

Authors :
Kumar A
Won SY
Sood A
Choi SY
Singhmar R
Bhaskar R
Kumar V
Zo SM
Han SS
Source :
International journal of molecular sciences [Int J Mol Sci] 2022 Nov 16; Vol. 23 (22). Date of Electronic Publication: 2022 Nov 16.
Publication Year :
2022

Abstract

Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.

Details

Language :
English
ISSN :
1422-0067
Volume :
23
Issue :
22
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
36430637
Full Text :
https://doi.org/10.3390/ijms232214158