Back to Search
Start Over
An Improved Diagnostic of the Mycobacterium tuberculosis Drug Resistance Status by Applying a Decision Tree to Probabilities Assigned by the CatBoost Multiclassifier of Matrix Metalloproteinases Biomarkers.
- Source :
-
Diagnostics (Basel, Switzerland) [Diagnostics (Basel)] 2022 Nov 17; Vol. 12 (11). Date of Electronic Publication: 2022 Nov 17. - Publication Year :
- 2022
-
Abstract
- In this work, we discuss an opportunity to use a set of the matrix metalloproteinases MMP-1, MMP-8, and MMP-9 and the tissue inhibitor TIMP, the concentrations of which can be easily obtained via a blood test from patients suffering from tuberculosis, as the biomarker for a fast diagnosis of the drug resistance status of Mycobacterium tuberculosis . The diagnostic approach is based on machine learning with the CatBoost system, which has been supplied with additional postprocessing. The latter refers not only to the simple probabilities of ML-predicted outcomes but also to the decision tree-like procedure, which takes into account the presence of strict zeros in the primary set of probabilities. It is demonstrated that this procedure significantly elevates the accuracy of distinguishing between sensitive, multi-, and extremely drug-resistant strains.
Details
- Language :
- English
- ISSN :
- 2075-4418
- Volume :
- 12
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Diagnostics (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 36428907
- Full Text :
- https://doi.org/10.3390/diagnostics12112847