Back to Search Start Over

Origin, evolution, and future of isoprene and nitric oxide interactions within leaves.

Authors :
Velikova V
Dani KGS
Loreto F
Source :
Journal of experimental botany [J Exp Bot] 2023 Feb 05; Vol. 74 (3), pp. 688-706.
Publication Year :
2023

Abstract

Photolytic generation of nitric oxide (NO), isoprene, and reactive oxygen species (ROS) pre-dated life on Earth (~4 billion years ago). However, isoprene-ROS-NO interactions became relevant to climate chemistry ~50 million years ago, after aquatic and terrestrial ecosystems became dominated by isoprene-emitting diatoms and angiosperms. Today, NO and NO2 (together referred to as NOx) are dangerous biogenic gaseous atmospheric pollutants. In plants, NO, with its multiple sources and sinks, acts as a secondary messenger that regulates development at low doses and induces cell death at high doses. Likewise, biogenic isoprene is a putative antioxidant and hormone 'enabler' that hastens plant (and leaf) growth and reproduction, and improves plant tolerance to transient abiotic stresses. Using examples from controlled-chamber simulation and field studies of isoprene oxidation, we discuss the likely nature and extent of isoprene oxidation within leaves. We argue that isoprene-NO interactions vary greatly among plant species, driven by differences in isoprene emission rate and nitrate assimilation capacity (i.e. NO sink strength), ROS availability, and the within-leaf ratio between free-NO and isoprene. In a warmer and CO2-fertilized future climate, antagonism between isoprene and NO within leaves will probably occur in a NO-rich (relative to present) environment, yielding a greater proportion of isoprene oxidation products, and inducing major changes in NO-mediated growth and stress responses.<br /> (© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1460-2431
Volume :
74
Issue :
3
Database :
MEDLINE
Journal :
Journal of experimental botany
Publication Type :
Academic Journal
Accession number :
36420758
Full Text :
https://doi.org/10.1093/jxb/erac459