Back to Search
Start Over
Pharmacological interventions for preventing venous thromboembolism in people undergoing bariatric surgery.
- Source :
-
The Cochrane database of systematic reviews [Cochrane Database Syst Rev] 2022 Nov 22; Vol. 11. Cochrane AN: CD013683. Date of Electronic Publication: 2022 Nov 22. - Publication Year :
- 2022
-
Abstract
- Background: Venous thromboembolism (VTE), which comprises deep vein thrombosis (DVT) and pulmonary embolism (PE), is the leading cause of preventable death in hospitalised people and the third most common cause of mortality in surgical patients. People undergoing bariatric surgery have the additional risk factor of being overweight. Although VTE prophylaxis in surgical patients is well established, the best way to prevent VTE in those undergoing bariatric surgery is less clear.<br />Objectives: To evaluate the benefits and harms of pharmacological interventions (alone or in combination) on venous thromboembolism and other health outcomes in people undergoing bariatric surgery compared to the same pharmacological intervention administered at a different dose or frequency, the same pharmacological intervention or started at a different time point, another pharmacological intervention, no intervention or placebo.<br />Search Methods: We used standard, extensive Cochrane search methods. The latest search date was 1 November 2021.<br />Selection Criteria: We included randomised controlled trials (RCTs) and quasi-RCTs in males and females of any age undergoing bariatric surgery comparing pharmacological interventions for VTE (alone or in combination) with the same pharmacological intervention administered at a different dose or frequency, the same pharmacological intervention started at a different time point, a different pharmacological intervention, no treatment or placebo.<br />Data Collection and Analysis: We used standard Cochrane methods. Our primary outcomes were 1. VTE and 2. major bleeding. Our secondary outcomes were 1. all-cause mortality, 2. VTE-related mortality, 3. PE, 4. DVT, 5. adverse effects and 6. quality of life. We used GRADE to assess certainty of evidence for each outcome.<br />Main Results: We included seven RCTs with 1045 participants. Data for meta-analysis were available from all participants. Four RCTs (597 participants) compared higher-dose heparin to standard-dose heparin: one of these studies (139 participants) used unfractionated heparin (UFH) and the other three (458 participants) used low-molecular-weight heparin (LMWH). One study compared heparin versus pentasaccharide (198 participants), and one study compared starting heparin before versus after bariatric surgery (100 participants). One study (150 participants) compared combined mechanical and pharmacological (enoxaparin) prophylaxis versus mechanical prophylaxis alone. The duration of the interventions ranged from seven to 15 days, and follow-up ranged from 10 to 180 days. Higher-dose heparin versus standard-dose heparin Compared to standard-dose heparin, higher-dose heparin may result in little or no difference in the risk of VTE (RR 0.55, 95% CI 0.05 to 5.99; 4 studies, 597 participants) or major bleeding (RR 1.19, 95% CI 0.48 to 2.96; I <superscript>2</superscript> = 8%; 4 studies, 597 participants; low-certainty) in people undergoing bariatric surgery. The evidence on all-cause mortality, VTE-related mortality, PE, DVT and adverse events (thrombocytopenia) is uncertain (effect not estimable or very low-certainty evidence). Heparin versus pentasaccharide Heparin compared to a pentasaccharide after bariatric surgery may result in little or no difference in the risk of VTE (RR 0.83, 95% CI 0.19 to 3.61; 1 study, 175 participants) or DVT (RR 0.83, 95% CI 0.19 to 3.61; 1 study, 175 participants). The evidence on major bleeding, PE and mortality is uncertain (effect not estimable or very low-certainty evidence). Heparin started before versus after the surgical procedure Starting prophylaxis with heparin 12 hours before surgery versus after surgery may result in little or no difference in the risk of VTE (RR 0.11, 95% CI 0.01 to 2.01; 1 study, 100 participants) or DVT (RR 0.11, 95% CI 0.01 to 2.01; 1 study, 100 participants). The evidence on major bleeding, all-cause mortality and VTE-related mortality is uncertain (effect not estimable or very low-certainty evidence). We were unable to assess the effect of this intervention on PE or adverse effects, as the study did not measure these outcomes. Combined mechanical and pharmacological prophylaxis versus mechanical prophylaxis alone Combining mechanical and pharmacological prophylaxis (started 12 hours before surgery) may reduce VTE events in people undergoing bariatric surgery compared to mechanical prophylaxis alone (RR 0.05, 95% CI 0.00 to 0.89; number needed to treat for an additional beneficial outcome (NNTB) = 9; 1 study, 150 participants; low-certainty). We were unable to assess the effect of this intervention on major bleeding or morality (effect not estimable), or on PE or adverse events (not measured). No studies measured quality of life.<br />Authors' Conclusions: Higher-dose heparin may make little or no difference to venous thromboembolism or major bleeding in people undergoing bariatric surgery when compared to standard-dose heparin. Heparin may make little or no difference to venous thromboembolism in people undergoing bariatric surgery when compared to pentasaccharide. There are inadequate data to draw conclusions about the effects of heparin compared to pentasaccharide on major bleeding. Starting prophylaxis with heparin 12 hours before bariatric surgery may make little or no difference to venous thromboembolism in people undergoing bariatric surgery when compared to starting heparin after bariatric surgery. There are inadequate data to draw conclusions about the effects of heparin started before versus after surgery on major bleeding. Combining mechanical and pharmacological prophylaxis (started 12 hours before surgery) may reduce VTE events in people undergoing bariatric surgery when compared to mechanical prophylaxis alone. No data are available relating to major bleeding. The certainty of the evidence is limited by small sample sizes, few or no events, and risk of bias concerns. Future trials must be sufficiently large to enable analysis of relevant clinical outcomes, and should standardise the time of treatment and follow-up. They should also address the effect of direct oral anticoagulants and antiplatelets, preferably grouping them according to the type of intervention.<br /> (Copyright © 2022 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)
- Subjects :
- Female
Humans
Male
Anticoagulants therapeutic use
Hemorrhage etiology
Heparin therapeutic use
Randomized Controlled Trials as Topic
Bariatric Surgery adverse effects
Bariatric Surgery methods
Pulmonary Embolism prevention & control
Pulmonary Embolism etiology
Venous Thromboembolism prevention & control
Venous Thromboembolism drug therapy
Subjects
Details
- Language :
- English
- ISSN :
- 1469-493X
- Volume :
- 11
- Database :
- MEDLINE
- Journal :
- The Cochrane database of systematic reviews
- Publication Type :
- Academic Journal
- Accession number :
- 36413425
- Full Text :
- https://doi.org/10.1002/14651858.CD013683.pub2