Back to Search Start Over

Anti-Fungal Potential of Structurally Diverse FDA-Approved Therapeutics Targeting Secreted Aspartyl Proteinase (SAP) of Candida albicans: an In Silico Drug Repurposing Approach.

Authors :
Dhanasekaran S
Selvadoss PP
Manoharan SS
Source :
Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2023 Mar; Vol. 195 (3), pp. 1983-1998. Date of Electronic Publication: 2022 Nov 19.
Publication Year :
2023

Abstract

In recent years, candidiasis attains major clinical importance due to its unique pathogenic strategy, which distinguishes it from other nosocomial infections. Secreted aspartyl proteinases (SAPs) is a hydrolytic enzyme secreted by Candida species that mediate versatile biological activity including hyphal formation, adherence, biofilm formation, phenotypic adaptation, etc. Emerging clinical evidence strongly suggested that conventional anti-fungal agent's are often prone to high level of resistance upon repeated exposure. Drug repurposing is an ideal strategy that shall impose the additional clinical benefits of the already approved molecules. Hence, through this realistic pathway, the potential of the suitable lead candidates will be explored in order to prolong the life span of existing molecules thereby need for newer therapeutics shall be avoided. The main aim of the present investigation is to determine the enzyme inhibitory potential of certain FDA-approved antibiotics and to validate its efficacy against the virulent enzyme secreted aspartyl proteinase (SAP) of Candida albicans via the AutoDock simulation program. The outcome of in silico dynamic simulations depicts that the drugs such as gentamicin, clindamycin, meropenem, metronidazole, and aztreonam emphasize superior binding affinity in terms of demonstrating considerable interaction with the core catalytic residues (Asp 32, Asp86, Asp 218, Gly220, Thr 221, and Thr 222). Data further indicates that the drug gentamicin exhibited best binding affinity of - 14.16 kcal/mol followed by meropenem (- 9.20 kcal/mol), clindamycin (- 9.00 kcal/mol), ciprofloxacin (- 8.95 kcal/mol), and imipenem (- 8.00 kcal/mol). In conclusion, repurposed antibiotics like gentamicin, clindamycin, meropenem, metronidazole, and aztreonam shall be considered an alternate drug of choice for the clinical management of drug resistant candida infections in the near future.<br /> (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Details

Language :
English
ISSN :
1559-0291
Volume :
195
Issue :
3
Database :
MEDLINE
Journal :
Applied biochemistry and biotechnology
Publication Type :
Academic Journal
Accession number :
36401722
Full Text :
https://doi.org/10.1007/s12010-022-04207-w