Back to Search Start Over

Differential ultracentrifugation enables deep plasma proteomics through enrichment of extracellular vesicles.

Authors :
Kverneland AH
Østergaard O
Emdal KB
Svane IM
Olsen JV
Source :
Proteomics [Proteomics] 2023 Apr; Vol. 23 (7-8), pp. e2200039. Date of Electronic Publication: 2022 Nov 27.
Publication Year :
2023

Abstract

Human plasma is a rich source of biomedical information and biomarkers. However, the enormous dynamic range of plasma proteins limits its accessibility to mass spectrometric (MS) analysis. Here, we show that enrichment of extracellular vesicles (EVs) by ultracentrifugation increases plasma proteome depth by an order of magnitude. With this approach, more than two thousand proteins are routinely and reproducibly quantified by label-free quantification and data independent acquisition (DIA) in single-shot liquid chromatography tandem mass spectrometry runs of less than one hour. We present an optimized plasma proteomics workflow that enables high-throughput with very short chromatographic gradients analyzing hundred samples per day with deep proteome coverage, especially when including a study-specific spectral library generated by repeated injection and gas-phase fractionation of pooled samples. Finally, we test the workflow on clinical biobank samples from malignant melanoma patients in immunotherapy to demonstrate the improved proteome coverage supporting the potential for future biomarker discovery.<br /> (© 2022 The Authors. Proteomics published by Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1615-9861
Volume :
23
Issue :
7-8
Database :
MEDLINE
Journal :
Proteomics
Publication Type :
Academic Journal
Accession number :
36398564
Full Text :
https://doi.org/10.1002/pmic.202200039