Back to Search Start Over

Click functionalized biocompatible gadolinium oxide core-shell nanocarriers for imaging of breast cancer cells.

Authors :
Siribbal SM
Ilyas S
Renner AM
Iqbal S
Muñoz Vázquez S
Moawia A
Valldor M
Hussain MS
Schomäcker K
Mathur S
Source :
RSC advances [RSC Adv] 2022 Nov 08; Vol. 12 (49), pp. 31830-31845. Date of Electronic Publication: 2022 Nov 08 (Print Publication: 2022).
Publication Year :
2022

Abstract

Site-specific delivery using functionalized nanocarriers is in high demand in imaging applications of modern clinical research. To improve the imaging capabilities of conventionally used contrast agents and expand the targeting accuracy, functional gadolinium oxide based nanocarriers originated from homogeneous core shells structures (Gd <subscript>2</subscript> O <subscript>3</subscript> @SiO <subscript>2</subscript> @Fe <subscript>3</subscript> O <subscript>4</subscript> ) were developed using a multilayer formation approach. The synthesis and chemical configuration for the covalent binding of macrocyclic chelating agents and estrogen targeting molecules on these nanocarriers were designed by a two-step chemical synthesis method. Initially, SiO <subscript>2</subscript> @Fe <subscript>3</subscript> O <subscript>4</subscript> structures were prepared and encapsulated with a homogenous thin Gd <subscript>2</subscript> O <subscript>3</subscript> overlayer. The exterior surface of the as-prepared carriers offered chemical binding with a breast cancer specific estrogen molecule, covalently grafted through a Click-Chemistry protocol. In the next step, to enhance the diagnostic imaging capabilities of these carriers, thiocyanate-linked chelator molecule, DOTA, was attached to the surface of estrogen bound Gd <subscript>2</subscript> O <subscript>3</subscript> @SiO <subscript>2</subscript> @Fe <subscript>3</subscript> O <subscript>4</subscript> using basic reaction conditions. The active amino groups before and after conjugation of estrogen molecules on the surface were quantified using a fluorescamine based approach. Due to the covalent binding of the macrocyclic chelator to the Gd <subscript>2</subscript> O <subscript>3</subscript> @SiO <subscript>2</subscript> @Fe <subscript>3</subscript> O <subscript>4</subscript> surface, core shell carriers showed potential radiolabeling efficiency using positron emitter radionuclide, gallium-68 ( <superscript>68</superscript> Ga). Intracellular uptake of estrogen-conjugated carriers was evaluated with MCF7 breast cancer cell lines using confocal laser scanning microscopy and fluorescent flow cytometry. In addition, in vitro cytotoxicity studies of functional nanocarriers as compared to bare nanoparticles showed reduced toxicity to HEK-293 cells demonstrating the role of surface attached molecules in preventing direct exposure of the Gd <subscript>2</subscript> O <subscript>3</subscript> surface to the cells. The as-developed gadolinium based nanocarriers presented excellent capabilities as biocompatible target-specific imaging probes which indicates great potential in the field of dual-mode contrast agents.<br />Competing Interests: The authors declare no competing financial conflict of interest.<br /> (This journal is © The Royal Society of Chemistry.)

Details

Language :
English
ISSN :
2046-2069
Volume :
12
Issue :
49
Database :
MEDLINE
Journal :
RSC advances
Publication Type :
Academic Journal
Accession number :
36380928
Full Text :
https://doi.org/10.1039/d2ra00347c