Back to Search
Start Over
Tetrandrine alleviates inflammation and neuron apoptosis in experimental traumatic brain injury by regulating the IRE1α/JNK/CHOP signal pathway.
- Source :
-
Brain and behavior [Brain Behav] 2022 Dec; Vol. 12 (12), pp. e2786. Date of Electronic Publication: 2022 Nov 14. - Publication Year :
- 2022
-
Abstract
- Aim: The aim of this study was to investigate the therapeutic roles of Tetrandrine (TET) on traumatic brain injury (TBI) and the underlying mechanism.<br />Method: Traumatic injury model of hippocampal neurons and TBI mouse model were established to evaluate the therapeutic effects. The expression of neuron-specific enolase (NSE), Caspase 3, and Caspase 12 was detected by immunofluorescence. The expression of TNF-α, NF-κB, TRAF1, ERS markers (GADD34 and p-PERK), IRE1α, CHOP, JNK, and p-JNK were evaluated by western blot. Flow cytometry was used to determine the apoptosis of neurons. Brain injury was assessed by Garcia score, cerebral water content, and Evan blue extravasation test. Hematoxylin and eosin staining was used to determine the morphological changes of hippocampal tissue. Apoptosis was assessed by TUNEL staining.<br />Result: In traumatic injury model of hippocampal neurons, TET downregulated NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK expression. TET reduced Caspase 3 and Caspase 12 cleavage. Apoptosis rate was inhibited by the introduction of TET. TET improved the Garcia neural score, decreased the cerebral water content and Evans blue extravasation, and reduced NSE, TNF-α, NF-κB, TRAF1, IRE1α, CHOP, and p-JNK expression in mice with TBI, which was significantly reversed by Anisomycin, a JNK selective activator.<br />Conclusion: TET alleviated inflammation and neuron apoptosis in experimental TBI by regulating the IRE1α/JNK/CHOP signal pathway.<br /> (© 2022 The Authors. Brain and Behavior published by Wiley Periodicals LLC.)
- Subjects :
- Animals
Mice
Apoptosis drug effects
Benzylisoquinolines pharmacology
Caspase 12 metabolism
Caspase 3 metabolism
Inflammation drug therapy
Inflammation metabolism
MAP Kinase Kinase 4 drug effects
Neurons metabolism
Neurons pathology
NF-kappa B metabolism
Protein Serine-Threonine Kinases metabolism
Signal Transduction drug effects
TNF Receptor-Associated Factor 1 metabolism
TNF Receptor-Associated Factor 1 pharmacology
Transcription Factor CHOP drug effects
Transcription Factor CHOP metabolism
Tumor Necrosis Factor-alpha metabolism
Water metabolism
Water pharmacology
Disease Models, Animal
Brain Injuries, Traumatic drug therapy
Brain Injuries, Traumatic metabolism
Endoribonucleases metabolism
Endoribonucleases pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 2162-3279
- Volume :
- 12
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Brain and behavior
- Publication Type :
- Academic Journal
- Accession number :
- 36377337
- Full Text :
- https://doi.org/10.1002/brb3.2786