Back to Search
Start Over
Light-intensity exercise improves memory dysfunction with the restoration of hippocampal MCT2 and miRNAs in type 2 diabetic mice.
- Source :
-
Metabolic brain disease [Metab Brain Dis] 2023 Jan; Vol. 38 (1), pp. 245-254. Date of Electronic Publication: 2022 Nov 12. - Publication Year :
- 2023
-
Abstract
- Cognitive decline associated with type 2 diabetes mellitus (T2DM) is a risk factor to impair human health. Although light-intensity exercise prevents hippocampal memory dysfunction in pre-symptomatic T2DM animals by altering hippocampal lactate transport and neurotrophic factors, the effects of light-intensity exercise in an advanced stage of T2DM animals remain unclear. Here, ob/ob mice, an animal model of T2DM, were subjected to light-intensity exercise (5.0 m/min) for 30 min/day, five days/week for four weeks. The effects of light-intensity exercise on hippocampal complications, mRNA expressions of monocarboxylate transporter (MCT), and miRNA levels were assessed. The light-intensity exercise improved hippocampal memory retention in ob/ob mice. Downregulated hippocampal Mct2 mRNA levels in T2DM were improved with light-intensity exercise. Hippocampal mRNA levels of Mct1 and Mct4 were unchanged within groups. Based on miRNA sequencing, sedentary ob/ob mice exhibited that 71 miRNAs were upregulated, and 77 miRNAs were downregulated in the hippocampus. In addition, the exercise significantly increased 24 miRNAs and decreased 4 miRNAs in the T2DM hippocampus. The exercise reversed T2DM-induced alterations of hippocampal 9 miRNAs, including miR-200a-3p. Our findings imply that miR-200a-3p/Mct2 in the hippocampus would be a possible clinical target for treating T2DM-induced memory dysfunction.<br /> (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
Details
- Language :
- English
- ISSN :
- 1573-7365
- Volume :
- 38
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Metabolic brain disease
- Publication Type :
- Academic Journal
- Accession number :
- 36370225
- Full Text :
- https://doi.org/10.1007/s11011-022-01117-y