Back to Search Start Over

Salidroside reduces neuropathology in Alzheimer's disease models by targeting NRF2/SIRT3 pathway.

Authors :
Yao Y
Ren Z
Yang R
Mei Y
Dai Y
Cheng Q
Xu C
Xu X
Wang S
Kim KM
Noh JH
Zhu J
Zhao N
Liu YU
Mao G
Sima J
Source :
Cell & bioscience [Cell Biosci] 2022 Nov 04; Vol. 12 (1), pp. 180. Date of Electronic Publication: 2022 Nov 04.
Publication Year :
2022

Abstract

Background: Neurite dystrophy is a pathologic hallmark of Alzheimer's disease (AD). However, drug discovery targeting neurite protection in AD remains largely unexplored.<br />Methods: Aβ-induced neurite and mitochondrial damage assays were used to evaluate Aβ toxicity and the neuroprotective efficacy of a natural compound salidroside (SAL). The 5×FAD transgenic mouse model of AD was used to study the neuroprotective function of SAL. To verify the direct target of SAL, we used surface plasmon resonance and cellular thermal shift assays to analyze the drug-protein interaction.<br />Results: SAL ameliorates Aβ-mediated neurite damage in cell culture. We further reveal that SAL represses mitochondrial damage in neurites by promoting mitophagy and maintaining mitochondrial homeostasis, dependent on an NAD-dependent deacetylase SIRT3. In AD mice, SAL protects neurite morphology, mitigates Aβ pathology, and improves cognitive function, which are all SIRT3-dependent. Notably, SAL directly binds to transcription factor NRF2, inhibits its degradation by blocking its interaction with KEAP1 ubiquitin ligase, and then advances NRF2-mediated SIRT3 transcription.<br />Conclusions: Overall, we demonstrate that SAL, a potential anti-aging drug candidate, attenuates AD pathology by targeting NRF2/SIRT3 pathway for mitochondrial and neurite protection. Drug discovery strategies focusing on SAL may thus provide promising therapeutics for AD.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2045-3701
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Cell & bioscience
Publication Type :
Academic Journal
Accession number :
36333711
Full Text :
https://doi.org/10.1186/s13578-022-00918-z