Back to Search
Start Over
Altered basal ganglia output during self-restraint.
- Source :
-
ELife [Elife] 2022 Nov 02; Vol. 11. Date of Electronic Publication: 2022 Nov 02. - Publication Year :
- 2022
-
Abstract
- Suppressing actions is essential for flexible behavior. Multiple neural circuits involved in behavioral inhibition converge upon a key basal ganglia output nucleus, the substantia nigra pars reticulata (SNr). To examine how changes in basal ganglia output contribute to self-restraint, we recorded SNr neurons during a proactive behavioral inhibition task. Rats responded to Go! cues with rapid leftward or rightward movements, but also prepared to cancel one of these movement directions on trials when a Stop! cue might occur. This action restraint - visible as direction-selective slowing of reaction times - altered both rates and patterns of SNr spiking. Overall firing rate was elevated before the Go! cue, and this effect was driven by a subpopulation of direction-selective SNr neurons. In neural state space, this corresponded to a shift away from the restrained movement. SNr neurons also showed more variable inter-spike intervals during proactive inhibition. This corresponded to more variable state-space trajectories, which may slow reaction times via reduced preparation to move. These findings open new perspectives on how basal ganglia dynamics contribute to movement preparation and cognitive control.<br />Competing Interests: BG, JB No competing interests declared<br /> (© 2022, Gu and Berke.)
Details
- Language :
- English
- ISSN :
- 2050-084X
- Volume :
- 11
- Database :
- MEDLINE
- Journal :
- ELife
- Publication Type :
- Academic Journal
- Accession number :
- 36321810
- Full Text :
- https://doi.org/10.7554/eLife.82143