Back to Search Start Over

A gold nanoparticles-based lateral flow assay utilizing baculovirus expressed recombinant nucleocapsid and receptor binding domain proteins for serodetection of IgG and IgM against SARS-CoV-2.

Authors :
Salem R
Elshamy AM
Kamel N
Younes S
Marie OM
Waly FR
El-Kholy AA
Elmenofy W
Source :
Biotechnology letters [Biotechnol Lett] 2022 Dec; Vol. 44 (12), pp. 1507-1517. Date of Electronic Publication: 2022 Nov 01.
Publication Year :
2022

Abstract

Serological assays for SARS-CoV-2 are being utilized at an exponential rate for surveillance programs. This enterprise was designed to develop and validate a qualitative immunochromatographic test, via the Lateral Flow Assay (LFA), for detection of immunoglobulins M and G (IgM and IgG) against both nucleocapsid (N) and the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. Both targeted proteins were cloned and expressed in baculovirus expression system utilizing insect cells Sf9. The recombinant RBD and N proteins were purified and conjugated with gold nanoparticles (AuNPs) to set up the coating antigens pad. Both anti-human IgG and IgM were dispensed on nitrocellulose membrane to capture human antibodies in serum samples. A home-made dispensing system was developed to draw identical test and control lines. The validity of the developed LFA was verified by testing serum samples from 103 convalescent COVID-19 patients who were PCR positive for SARS-CoV-2 along with 28 control serum samples. The developed strips showed distinctive bands for IgM and IgG of both proteins (RBD and N) in positive samples. The sensitivity of RBD-based LFA was 70.9% and 39.8% for IgG and IgM, respectively, with a specificity of 100% for both. The N-based LFA exhibited a sensitivity of 73.8% and 35.9% for IgG and IgM, respectively, while its specificity was 75% and 100% for IgG and IgM, respectively. Our developed LFA could afford a tool for surveillance programs in low-resource countries. Moreover, it might be functional for rapid and inexpensive monitoring of the anti-SARS-CoV-2 antibodies in the sera of vaccinated individuals.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
1573-6776
Volume :
44
Issue :
12
Database :
MEDLINE
Journal :
Biotechnology letters
Publication Type :
Academic Journal
Accession number :
36319880
Full Text :
https://doi.org/10.1007/s10529-022-03316-0